COMPRESSION OF A RIGID-PERFECTLY PLASTIC STRIP BETWEEN PARALLEL ROTATING SMOOTH DIES

1970 ◽  
Vol 23 (3) ◽  
pp. 329-348 ◽  
Author(s):  
I. F. COLLINS
1979 ◽  
Vol 46 (2) ◽  
pp. 317-321 ◽  
Author(s):  
N. S. Das ◽  
J. Banerjee ◽  
I. F. Collins

This paper presents the results of computer calculations of a class of slipline solutions for compression between parallel dies with slipping friction at the die-metal interface such that the frictional shear traction is a constant proportion of the yield stress. The slipline fields considered here have previously only been suggested qualitatively. The fields are of “indirect type”, requiring the solution of linear integral equations. They have been analyzed and computed here using the recently developed matrix operator procedure. The numerical results obtained are compared with those obtained from approximate upper bound and other “technological” theories.


2012 ◽  
Vol 21 (1-2) ◽  
pp. 37-39
Author(s):  
David J. Unger

AbstractA finite element analysis indicates a good correlation between the Dugdale plastic strip model and a linear elastic/perfectly plastic material under plane stress loading conditions for a flow theory of plasticity based on the Tresca yield condition. A similar analysis under the von Mises yield condition reveals no plastic strip formation.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


2020 ◽  
Vol 10 (1) ◽  
pp. 519-526
Author(s):  
Krzysztof Nepelski

AbstractIn order to correctly model the behaviour of a building under load, it is necessary to take into account the displacement of the subsoil under the foundations. The subsoil is a material with typically non-linear behaviour. This paper presents an example of the modelling of a tall, 14-storey, building located in Lublin. The building was constructed on loess subsoil, with the use of a base slab. The subsoil lying directly beneath the foundations was described using the Modified Cam-Clay model, while the linear elastic perfectly plastic model with the Coulomb-Mohr failure criterion was used for the deeper subsoil. The parameters of the subsoil model were derived on the basis of the results of CPT soundings and laboratory oedometer tests. In numerical FEM analyses, the floors of the building were added in subsequent calculation steps, simulating the actual process of building construction. The results of the calculations involved the displacements taken in the subsequent calculation steps, which were compared with the displacements of 14 geodetic benchmarks placed in the slab.


2021 ◽  
Vol 11 (1) ◽  
pp. 294-302
Author(s):  
Gal Davidi

Abstract In this work an analysis of the radial stress and velocity fields is performed according to the J 2 flow theory for a rigid/perfectly plastic material. The flow field is used to simulate the forming processes of sheets. The significant achievement of this paper is the generalization of the work by Nadai & Hill for homogenous material in the sense of its yield stress, to a material with general transverse non-homogeneity. In Addition, a special un-coupled form of the system of equations is obtained where the task of solving it reduces to the solution of a single non-linear algebraic differential equation for the shear stress. A semi-analytical solution is attained solving numerically this equation and the rest of the stresses term together with the velocity field is calculated analytically. As a case study a tri-layered symmetrical sheet is chosen for two configurations: soft inner core and hard coating, hard inner core and soft coating. The main practical outcome of this work is the derivation of the validity limit for radial solution by mapping the “state space” that encompasses all possible configurations of the forming process. This configuration mapping defines the “safe” range of configurations parameters in which flawless processes can be achieved. Several aspects are researched: the ratio of material's properties of two adjacent layers, the location of layers interface and friction coefficient with the walls of the dies.


Sign in / Sign up

Export Citation Format

Share Document