Does surface tension stabilize liquid films inside a rotating horizontal cylinder?

2005 ◽  
Vol 58 (2) ◽  
pp. 185-200 ◽  
Author(s):  
E. S. Benilov ◽  
N. Kopteva ◽  
S. B. G. O'Brien
Author(s):  
Xuemin Ye ◽  
Chunxi Li ◽  
Weiping Yan

The linear spatial evolution formulation of the two-dimensional waves of the evaporating or isothermal or condensing liquid films falling down an inclined wall is established for the film thickness with the collocation method based on the boundary layer theory and complete boundary conditions. The evolution equation indicates that there are two different modes of waves in spatial evolution. And the flow stability is highly dependent on the evaporation or condensation, thermocapillarity, surface tension, inclination angle and Reynolds number.


1964 ◽  
Vol 86 (2) ◽  
pp. 220-225 ◽  
Author(s):  
J. H. Lienhard ◽  
P. T. Y. Wong

Predictions of the dominant unstable wavelength and the minimum heat flux during film boiling above a flat plate are found to be inapplicable in the case of boiling on small wires. New expressions are developed for the case of a horizontal cylinder, by accounting for the effect of surface tension in the transverse direction upon the Taylor instability of the interface. Original measurements of wavelengths and minimum heat fluxes on small wires are also provided. These data support the predictions.


1992 ◽  
Vol 114 (3) ◽  
pp. 703-707 ◽  
Author(s):  
X. F. Peng ◽  
G. P. Peterson

An analytical investigation was conducted to determine the rewetting characteristics of thin, surface tension driven liquid films over heated plates as a function of the fluid properties, the film thickness, and the applied heat flux. Analytical expressions for the maximum sustainable heat flux and the rewetting velocity were developed for both flat and grooved plates and were compared with data from previous investigations. The results indicated good agreement for low film velocities; however, at high velocities the experimental data deviated significantly from the theoretical predictions. It was hypothesized that this deviation was due to the presence of liquid sputtering near the liquid front. To compensate for this liquid sputtering, the expressions for maximum sustainable heat flux and rewetting velocity were modified using an empirical correction factor developed from the data of previous thin film thickness investigations. The resulting modified expressions were found to compare very favorably with available experimental data over a large range of flow conditions and velocities.


2016 ◽  
Vol 792 ◽  
pp. 168-185 ◽  
Author(s):  
Andreas Hadjittofis ◽  
John R. Lister ◽  
Kiran Singh ◽  
Dominic Vella

We consider the effect of evaporation on the aggregation of a number of elastic objects due to a liquid’s surface tension. In particular, we consider an array of spring–block elements in which the gaps between blocks are filled by thin liquid films that evaporate during the course of an experiment. Using lubrication theory to account for the fluid flow within the gaps, we study the dynamics of aggregation. We find that a non-zero evaporation rate causes the elements to aggregate more quickly and, indeed, to contact within finite time. However, we also show that the final number of elements within each cluster decreases as the evaporation rate increases. We explain these results quantitatively by comparison with the corresponding two-body problem and discuss their relevance for controlling pattern formation in elastocapillary systems.


2008 ◽  
Vol 595 ◽  
pp. 435-459 ◽  
Author(s):  
GEORG F. DIETZE ◽  
A. LEEFKEN ◽  
R. KNEER

The phenomenon of backflow in the capillary wave region of laminar falling liquid films is studied in detail. For the first time, the mechanism leading to the origination of the phenomenon is identified and explained. It is shown that backflow forms as the result of a separation eddy developing at the bounding wall similar to the case of classical flow separation. Results show that the adverse pressure distribution causing the separation of the flow in the capillary wave region is induced by the strong third-order deformation (i.e. change in curvature) of the liquid–gas free surface there. This deformation acts on the interfacial pressure jump, and thereby the wall pressure distribution, as a result of surface tension forces. It is shown that only the capillary waves, owing to their short wavelength and large curvature, impose a pressure distribution satisfying the conditions for flow separation. The effect of this capillary separation eddy on momentum and heat transfer is investigated from the perspective of modelling approaches for falling liquid films. The study is centred on a single case of inclined liquid film flow in the visco-capillary regime with surface waves externally excited at a single forcing frequency. Investigations are based on temporally and spatially highly resolved numerical data obtained by solving the Navier–Stokes equations for both phases. Computation of phase distribution is performed with the volume of fluid method and the effect of surface tension is modelled using the continuum surface force approach. Numerical data are compared with experimental data measured in the developed region of the flow. Laser-Doppler velocimetry is used to measure the temporal distribution of the local streamwise velocity component, and confocal chromatic imaging is employed to measure the temporal distribution of film thickness. Excellent agreement is obtained with respect to film thickness and reasonable agreement with respect to velocity.


2018 ◽  
Vol 838 ◽  
pp. 192-221 ◽  
Author(s):  
B. Néel ◽  
E. Villermaux

We call thick those films for which the disjoining pressure and thermal fluctuations are ineffective. Water films with thickness $h$ in the $1{-}100~\unicode[STIX]{x03BC}\text{m}$ range are thick, but are also known, paradoxically, to nucleate holes spontaneously. We have uncovered a mechanism solving the paradox, relying on the extreme sensitivity of the film to surface tension inhomogeneities. The surface tension of a free liquid film is lowered by an amount $\unicode[STIX]{x0394}\unicode[STIX]{x1D70E}$ over a size $a$ by chemical or thermal contamination. At the same time this spot diffuses (within a time $a^{2}/D$, with $D$ the diffusion coefficient of the pollutant in the substrate), the Marangoni stress $\unicode[STIX]{x0394}\unicode[STIX]{x1D70E}/a$ induces an inhomogeneous outward interstitial flow which digs the film within a time $\unicode[STIX]{x1D70F}_{0}\sim \sqrt{\unicode[STIX]{x1D70C}ha^{2}/\unicode[STIX]{x0394}\unicode[STIX]{x1D70E}}$, with $\unicode[STIX]{x1D70C}$ the density of the liquid. When the Péclet number $Pe=a^{2}/D\unicode[STIX]{x1D70F}_{0}$ is larger than unity, the liquid substrate motion reinforces the surface tension gradient, triggering a self-sustained instability insensitive to diffusional regularisation. Several experimental illustrations of the phenomenon are given, both qualitative and quantitative, including a precise study of the first instants of the unstable dynamics made by controlled perturbations of a Savart sheet at large $Pe$.


Sign in / Sign up

Export Citation Format

Share Document