scholarly journals The neural basis of shared preference learning

2019 ◽  
Vol 14 (10) ◽  
pp. 1061-1072
Author(s):  
Harry Farmer ◽  
Uri Hertz ◽  
Antonia F de C Hamilton

Abstract During our daily lives, we often learn about the similarity of the traits and preferences of others to our own and use that information during our social interactions. However, it is unclear how the brain represents similarity between the self and others. One possible mechanism is to track similarity to oneself regardless of the identity of the other (Similarity account); an alternative is to track each other person in terms of consistency of their choice similarity with respect to the choices they have made before (consistency account). Our study combined functional Magnetic Resonance Imaging (fMRI) and computational modelling of reinforcement learning (RL) to investigate the neural processes that underlie learning about preference similarity. Participants chose which of two pieces of artwork they preferred and saw the choices of one agent who usually shared their preference and another agent who usually did not. We modelled neural activation with RL models based on the similarity and consistency accounts. Our results showed that activity in brain areas linked to reward and social cognition followed the consistency account. Our findings suggest that impressions of other people can be calculated in a person-specific manner, which assumes that each individual behaves consistently with their past choices.

2019 ◽  
Author(s):  
Harry Farmer ◽  
Uri Hertz ◽  
Antonia Hamilton

AbstractDuring our daily lives, we often learn about the similarity of the traits and preferences of others to our own and use that information during our social interactions. However, it is unclear how the brain represents similarity between the self and others. One possible mechanism is to track similarity to oneself regardless of the identity of the other (Similarity account); an alternative is to track each confederate in terms of consistency of the similarity to the self, with respect to the choices they have made before (consistency account). Our study combined fMRI and computational modelling of reinforcement learning (RL) to investigate the neural processes that underlie learning about preference similarity. Participants chose which of two pieces of artwork they preferred and saw the choices of one confederate who usually shared their preference and another who usually did not. We modelled neural activation with RL models based on the similarity and consistency accounts. Data showed more brain regions whose activity pattern fits with the consistency account, specifically, areas linked to reward and social cognition. Our findings suggest that impressions of other people can be calculated in a person-specific manner which assumes that each individual behaves consistently with their past choices.


2019 ◽  
Vol 26 (2) ◽  
pp. 117-133 ◽  
Author(s):  
Corey Horien ◽  
Abigail S. Greene ◽  
R. Todd Constable ◽  
Dustin Scheinost

Functional magnetic resonance imaging has proved to be a powerful tool to characterize spatiotemporal patterns of human brain activity. Analysis methods broadly fall into two camps: those summarizing properties of a region and those measuring interactions among regions. Here we pose an unappreciated question in the field: What are the strengths and limitations of each approach to study fundamental neural processes? We explore the relative utility of region- and connection-based measures in the context of three topics of interest: neurobiological relevance, brain-behavior relationships, and individual differences in brain organization. In each section, we offer illustrative examples. We hope that this discussion offers a novel and useful framework to support efforts to better understand the macroscale functional organization of the brain and how it relates to behavior.


2019 ◽  
Vol 14 (9) ◽  
pp. 1009-1016
Author(s):  
Sanja Klein ◽  
Onno Kruse ◽  
Isabell Tapia León ◽  
Tobias Stalder ◽  
Rudolf Stark ◽  
...  

Abstract Testosterone has been linked to alterations in the activity of emotion neurocircuitry including amygdala, orbitofrontal cortex (OFC) and insula and diminished functional amygdala/prefrontal coupling. Such associations have only ever been studied using acute measures of testosterone, thus little is known about respective relationships with long-term testosterone secretion. Here, we examine associations between hair testosterone concentration (HTC), an index of long-term cumulative testosterone levels and neural reactivity during an emotional passive viewing task using functional magnetic resonance imaging (fMRI). Forty-six men viewed negative, positive and neutral pictures in the MRI. HTCs were assessed from 2 cm hair segments. The emotional paradigm elicited neural activation in the amygdala, insula and OFC. HTCs were associated with increased reactivity to negative pictures in the insula and increased reactivity to positive pictures in the OFC. We show an association of long-term testosterone levels with increased emotional reactivity in the brain. These results suggest a heightened emotional vigilance in individuals with high trait testosterone levels.


Author(s):  
Mark A Thornton ◽  
Diana I Tamir

Abstract The social world buzzes with action. People constantly walk, talk, eat, work, play, snooze and so on. To interact with others successfully, we need to both understand their current actions and predict their future actions. Here we used functional neuroimaging to test the hypothesis that people do both at the same time: when the brain perceives an action, it simultaneously encodes likely future actions. Specifically, we hypothesized that the brain represents perceived actions using a map that encodes which actions will occur next: the six-dimensional Abstraction, Creation, Tradition, Food(-relevance), Animacy and Spiritualism Taxonomy (ACT-FAST) action space. Within this space, the closer two actions are, the more likely they are to precede or follow each other. To test this hypothesis, participants watched a video featuring naturalistic sequences of actions while undergoing functional magnetic resonance imaging (fMRI) scanning. We first use a decoding model to demonstrate that the brain uses ACT-FAST to represent current actions. We then successfully predicted as-yet unseen actions, up to three actions into the future, based on their proximity to the current action’s coordinates in ACT-FAST space. This finding suggests that the brain represents actions using a six-dimensional action space that gives people an automatic glimpse of future actions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yunqi Bu ◽  
Johannes Lederer

Abstract Graphical models such as brain connectomes derived from functional magnetic resonance imaging (fMRI) data are considered a prime gateway to understanding network-type processes. We show, however, that standard methods for graphical modeling can fail to provide accurate graph recovery even with optimal tuning and large sample sizes. We attempt to solve this problem by leveraging information that is often readily available in practice but neglected, such as the spatial positions of the measurements. This information is incorporated into the tuning parameter of neighborhood selection, for example, in the form of pairwise distances. Our approach is computationally convenient and efficient, carries a clear Bayesian interpretation, and improves standard methods in terms of statistical stability. Applied to data about Alzheimer’s disease, our approach allows us to highlight the central role of lobes in the connectivity structure of the brain and to identify an increased connectivity within the cerebellum for Alzheimer’s patients compared to other subjects.


BJPsych Open ◽  
2018 ◽  
Vol 4 (5) ◽  
pp. 317-323 ◽  
Author(s):  
Asako Mori ◽  
Yasumasa Okamoto ◽  
Go Okada ◽  
Koki Takagaki ◽  
Masahiro Takamura ◽  
...  

BackgroundBehavioural activation is an efficient treatment for depression and can improve intrinsic motivation. Previous studies have revealed that the frontostriatal circuit is involved in intrinsic motivation; however, there are no data on how behavioural activation affects the frontostriatal circuit.AimsWe aimed to investigate behavioural activation-related changes in the frontostriatal circuit.MethodFifty-nine individuals with subthreshold depression were randomly assigned to either the intervention or non-intervention group. The intervention group received five weekly behavioural activation sessions. The participants underwent functional magnetic resonance imaging scanning on two separate occasions while performing a stopwatch task based on intrinsic motivation. We investigated changes in neural activity and functional connectivity after behavioural activation.ResultsAfter behavioural activation, the intervention group had increased activation and connectivity in the frontostriatal region compared with the non-intervention group. The increased activation in the right middle frontal gyrus was correlated with an improvement of subjective sensitivity to environmental rewards.ConclusionsBehavioural activation-related changes to the frontostriatal circuit advance our understanding of psychotherapy-induced improvements in the neural basis of intrinsic motivation.Declaration of interestNone.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuka Inamochi ◽  
Kenji Fueki ◽  
Nobuo Usui ◽  
Masato Taira ◽  
Noriyuki Wakabayashi

AbstractSuccessful adaptation to wearing dentures with palatal coverage may be associated with cortical activity changes related to tongue motor control. The purpose was to investigate the brain activity changes during tongue movement in response to a new oral environment. Twenty-eight fully dentate subjects (mean age: 28.6-years-old) who had no experience with removable dentures wore experimental palatal plates for 7 days. We measured tongue motor dexterity, difficulty with tongue movement, and brain activity using functional magnetic resonance imaging during tongue movement at pre-insertion (Day 0), as well as immediately (Day 1), 3 days (Day 3), and 7 days (Day 7) post-insertion. Difficulty with tongue movement was significantly higher on Day 1 than on Days 0, 3, and 7. In the subtraction analysis of brain activity across each day, activations in the angular gyrus and right precuneus on Day 1 were significantly higher than on Day 7. Tongue motor impairment induced activation of the angular gyrus, which was associated with monitoring of the tongue’s spatial information, as well as the activation of the precuneus, which was associated with constructing the tongue motor imagery. As the tongue regained the smoothness in its motor functions, the activation of the angular gyrus and precuneus decreased.


2009 ◽  
Vol 364 (1522) ◽  
pp. 1407-1416 ◽  
Author(s):  
Katherine Woollett ◽  
Hugo J. Spiers ◽  
Eleanor A. Maguire

While there is widespread interest in and admiration of individuals with exceptional talents, surprisingly little is known about the cognitive and neural mechanisms underpinning talent, and indeed how talent relates to expertise. Because many talents are first identified and nurtured in childhood, it can be difficult to determine whether talent is innate, can be acquired through extensive practice or can only be acquired in the presence of the developing brain. We sought to address some of these issues by studying healthy adults who acquired expertise in adulthood. We focused on the domain of memory and used licensed London taxi drivers as a model system. Taxi drivers have to learn the layout of 25 000 streets in London and the locations of thousands of places of interest, and pass stringent examinations in order to obtain an operating licence. Using neuropsychological assessment and structural and functional magnetic resonance imaging, we addressed a range of key questions: in the context of a fully developed brain and an average IQ, can people acquire expertise to an exceptional level; what are the neural signatures, both structural and functional, associated with the use of expertise; does expertise change the brain compared with unskilled control participants; does it confer any cognitive advantages, and similarly, does it come at a cost to other functions? By studying retired taxi drivers, we also consider what happens to their brains and behaviour when experts stop using their skill. Finally, we discuss how the expertise of taxi drivers might relate to the issue of talent and innate abilities. We suggest that exploring talent and expertise in this manner could have implications for education, rehabilitation of patients with cognitive impairments, understanding individual differences and possibly conditions such as autism where exceptional abilities can be a feature.


Sign in / Sign up

Export Citation Format

Share Document