scholarly journals Neural Compensation Mechanisms of Siblings of Schizophrenia Patients as Revealed by High-Density EEG

2020 ◽  
Vol 46 (4) ◽  
pp. 1009-1018 ◽  
Author(s):  
Janir R da Cruz ◽  
Albulena Shaqiri ◽  
Maya Roinishvili ◽  
Ophélie Favrod ◽  
Eka Chkonia ◽  
...  

Abstract Visual backward masking (VBM) deficits are candidate endophenotypes of schizophrenia indexing genetic liability of the disorder. In VBM, a target is followed by a mask that deteriorates target perception. Schizophrenia patients and, to a lesser extent, their unaffected relatives show strong and reproducible VBM deficits. In patients, VBM deficits are associated with strongly decreased amplitudes in the evoked-related potentials (ERPs). Here, to unveil the neural mechanisms of VBM in schizophrenia, circumventing illness-specific confounds, we investigated the electroencephalogram correlates of VBM in unaffected siblings of schizophrenia patients. We tested 110 schizophrenia patients, 60 siblings, and 83 healthy controls. As in previous studies, patients showed strong behavioral deficits and decreased ERP amplitudes compared to controls. Surprisingly, the ERP amplitudes of siblings were even higher than the ones of controls, while their performances were similar. ERP amplitudes in siblings were found to correlate with performance. These results suggest that VBM is deteriorated in patients and siblings. However, siblings, unlike patients, can partially compensate for the deficits by over-activating a network of brain regions.

2004 ◽  
Vol 16 (3) ◽  
pp. 479-486 ◽  
Author(s):  
Belinda J. Liddell ◽  
Leanne M. Williams ◽  
Jennifer Rathjen ◽  
Howard Shevrin ◽  
Evian Gordon

Current theories of emotion suggest that threat-related stimuli are first processed via an automatically engaged neural mechanism, which occurs outside conscious awareness. This mechanism operates in conjunction with a slower and more comprehensive process that allows a detailed evaluation of the potentially harmful stimulus (LeDoux, 1998). We drew on the Halgren and Marinkovic (1995) model to examine these processes using event-related potentials (ERPs) within a backward masking paradigm. Stimuli used were faces with fear and neutral (as baseline control) expressions, presented above (supraliminal) and below (subliminal) the threshold for conscious detection. ERP data revealed a double dissociation for the supraliminal versus subliminal perception of fear. In the subliminal condition, responses to the perception of fear stimuli were enhanced relative to neutral for the N2 “excitatory” component, which is thought to represent orienting and automatic aspects of face processing. By contrast, supraliminal perception of fear was associated with relatively enhanced responses for the late P3 “inhibitory” component, implicated in the integration of emotional processes. These findings provide evidence in support of Halgren and Marinkovic's temporal model of emotion processing, and indicate that the neural mechanisms for appraising signals of threat may be initiated, not only automatically, but also without the need for conscious detection of these signals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the hypoactivation of frontal brain regions is associated with an hyperactivation in the amygdala and vice versa. This antagonistic connectivity is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.


2012 ◽  
Vol 24 (2) ◽  
pp. 396-415 ◽  
Author(s):  
Valia Rodríguez ◽  
Russell Thompson ◽  
Mark Stokes ◽  
Matthew Brett ◽  
Indira Alvarez ◽  
...  

In this study, we explored the neural correlates of perceptual awareness during a masked face detection task. To assess awareness more precisely than in previous studies, participants employed a 4-point scale to rate subjective visibility. An event-related fMRI and a high-density ERP study were carried out. Imaging data showed that conscious face detection was linked to activation of fusiform and occipital face areas. Frontal and parietal regions, including the pre-SMA, inferior frontal sulcus, anterior insula/frontal operculum, and intraparietal sulcus, also responded strongly when faces were consciously perceived. In contrast, no brain area showed face-selective activity when participants reported no impression of a face. ERP results showed that conscious face detection was associated with enhanced N170 and also with the presence of a second negativity around 300 msec and a slow positivity around 415 msec. Again, face-related activity was absent when faces were not consciously perceived. We suggest that, under conditions of backward masking, ventral stream and fronto-parietal regions show similar, strong links of face-related activity to conscious perception and stress the importance of a detailed assessment of awareness to examine activity related to unseen stimulus events.


2012 ◽  
Vol 198 (2) ◽  
pp. 235-240 ◽  
Author(s):  
Eka Chkonia ◽  
Maya Roinishvili ◽  
Liza Reichard ◽  
Wenke Wurch ◽  
Hendrik Puhlmann ◽  
...  

2013 ◽  
Vol 88 (2) ◽  
pp. 149-156 ◽  
Author(s):  
Mirjam J. van Tricht ◽  
Emma C. Harmsen ◽  
Johannes H.T.M. Koelman ◽  
Lo J. Bour ◽  
Thérèse A. van Amelsvoort ◽  
...  

2010 ◽  
Vol 21 (7) ◽  
pp. 931-937 ◽  
Author(s):  
C. Nathan DeWall ◽  
Geoff MacDonald ◽  
Gregory D. Webster ◽  
Carrie L. Masten ◽  
Roy F. Baumeister ◽  
...  

Pain, whether caused by physical injury or social rejection, is an inevitable part of life. These two types of pain—physical and social—may rely on some of the same behavioral and neural mechanisms that register pain-related affect. To the extent that these pain processes overlap, acetaminophen, a physical pain suppressant that acts through central (rather than peripheral) neural mechanisms, may also reduce behavioral and neural responses to social rejection. In two experiments, participants took acetaminophen or placebo daily for 3 weeks. Doses of acetaminophen reduced reports of social pain on a daily basis (Experiment 1). We used functional magnetic resonance imaging to measure participants’ brain activity (Experiment 2), and found that acetaminophen reduced neural responses to social rejection in brain regions previously associated with distress caused by social pain and the affective component of physical pain (dorsal anterior cingulate cortex, anterior insula). Thus, acetaminophen reduces behavioral and neural responses associated with the pain of social rejection, demonstrating substantial overlap between social and physical pain.


2007 ◽  
Vol 362 (1481) ◽  
pp. 761-772 ◽  
Author(s):  
Mark D'Esposito

Working memory refers to the temporary retention of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be stored for longer periods of time through active maintenance or rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behaviour. Empirical studies of working memory using neuroscientific techniques, such as neuronal recordings in monkeys or functional neuroimaging in humans, have advanced our knowledge of the underlying neural mechanisms of working memory. This rich dataset can be reconciled with behavioural findings derived from investigating the cognitive mechanisms underlying working memory. In this paper, I review the progress that has been made towards this effort by illustrating how investigations of the neural mechanisms underlying working memory can be influenced by cognitive models and, in turn, how cognitive models can be shaped and modified by neuroscientific data. One conclusion that arises from this research is that working memory can be viewed as neither a unitary nor a dedicated system. A network of brain regions, including the prefrontal cortex (PFC), is critical for the active maintenance of internal representations that are necessary for goal-directed behaviour. Thus, working memory is not localized to a single brain region but probably is an emergent property of the functional interactions between the PFC and the rest of the brain.


Sign in / Sign up

Export Citation Format

Share Document