scholarly journals Gene expression analysis in the mouse brainstem identifies Cart and Nesfatin as neuropeptides coexpressed in the Calbindin-positive neurons of the Nucleus papilio

SLEEP ◽  
2020 ◽  
Vol 43 (11) ◽  
Author(s):  
Franck Girard ◽  
Michelle von Siebenthal ◽  
Fred P Davis ◽  
Marco R Celio

Abstract Study Objectives: The brainstem contains several neuronal populations, heterogeneous in terms of neurotransmitter/neuropeptide content, which are important for controlling various aspects of the rapid eye movement (REM) phase of sleep. Among these populations are the Calbindin (Calb)-immunoreactive NPCalb neurons, located in the Nucleus papilio, within the dorsal paragigantocellular nucleus (DPGi), and recently shown to control eye movement during the REM phase of sleep. Methods: We performed in-depth data mining of the in situ hybridization data collected at the Allen Brain Atlas, in order to identify potentially interesting genes expressed in this brainstem nucleus. Our attention focused on genes encoding neuropeptides, including Cart (Cocaine and Amphetamine Regulated Transcripts) and Nesfatin 1. Results: While nesfatin 1 appeared ubiquitously expressed in this Calb-positive neuronal population, Cart was coexpressed in only a subset of these glutamatergic NPCalb neurons. Furthermore, an REM sleep deprivation and rebound assay performed with mice revealed that the Cart-positive neuronal population within the DPGi was activated during REM sleep (as measured by c-fos immunoreactivity), suggesting a role of this neuropeptide in regulating some aspects of REM sleep. Conclusions: The assembled information could afford functional clues to investigators, conducive to further experimental pursuits.

1995 ◽  
Vol 268 (6) ◽  
pp. R1456-R1463 ◽  
Author(s):  
T. Porkka-Heiskanen ◽  
S. E. Smith ◽  
T. Taira ◽  
J. H. Urban ◽  
J. E. Levine ◽  
...  

Noradrenergic locus ceruleus neurons are most active during waking and least active during rapid eye movement (REM) sleep. We expected REM sleep deprivation (REMSD) to increase norepinephrine utilization and activate the tyrosine hydroxylase (TH) gene critical for norepinephrine production. Male Wistar rats were deprived of REM sleep with the platform method. Rats were decapitated after 8, 24, or 72 h on small (REMSD) or large (control) platforms or after 8 or 24 h of rebound sleep after 72 h of the platform treatment. During the first 24 h, norepinephrine concentration, measured by high-performance liquid chromatography/electrochemical detection, was lower in the neocortex, hippocampus, and posterior hypothalamus in REMSD rats than in large-platform controls. After 72 h of REMSD, TH mRNA, measured by in situ hybridization, was increased in the locus ceruleus and norepinephrine concentrations were increased. Polygraphy showed that small-platform treatment caused effective and selective REMSD. Serum corticosterone measurement by radioimmunoassay indicated that the differences found in norepinephrine and TH mRNA were not due to differences in stress between the treatments. The novel finding of sleep deprivation-specific increase in TH gene expression indicates an important mechanism of adjusting to sleep deprivation.


2019 ◽  
Author(s):  
Charlotte Héricé ◽  
Shuzo Sakata

AbstractSleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep-wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network model upon synaptic weight manipulations. Our model consists of three neural populations connected by excitatory and inhibitory synapses. Activity in each population is described by a firing-rate model, which determines the state of the network. Namely wakefulness, rapid eye movement (REM) sleep or non-REM (NREM) sleep. By systematically manipulating the synaptic weight of every pathway, we show that even this simplified model exhibits non-trivial behaviors: for example, the wake-promoting population contributes not just to the induction and maintenance of wakefulness, but also to sleep induction. Although a recurrent excitatory connection of the REM-promoting population is essential for REM sleep genesis, this recurrent connection does not necessarily contribute to the maintenance of REM sleep. The duration of NREM sleep can be shortened or extended by changes in the synaptic strength of the pathways from the NREM-promoting population. In some cases, there is an optimal range of synaptic strengths that affect a particular state, implying that the amount of manipulations, not just direction (i.e., activation or inactivation), needs to be taken into account. These results demonstrate pathway-dependent regulation of sleep dynamics and highlight the importance of systems-level quantitative approaches for sleep-wake regulatory circuits.Author SummarySleep is essential and ubiquitous across animal species. Over the past half-century, various brain areas, cell types, neurotransmitters, and neuropeptides have been identified as part of a sleep-wake regulating circuitry in the brain. However, it is less explored how individual neural pathways contribute to the sleep-wake cycle. In the present study, we investigate the behavior of a computational model by altering the strength of connections between neuronal populations. This computational model is comprised of a simple network where three neuronal populations are connected together, and the activity of each population determines the current state of the model, that is, wakefulness, rapid-eye-movement (REM) sleep or non-REM (NREM) sleep. When we alter the connection strength of each pathway, we observe that the effect of such alterations on the sleep-wake cycle is highly pathway-dependent. Our results provide further insights into the mechanisms of sleep-wake regulation, and our computational approach can complement future biological experiments.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63520 ◽  
Author(s):  
Ricardo Borges Machado ◽  
Sergio Tufik ◽  
Deborah Suchecki

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Gabriela López-Armas ◽  
Mario Eduardo Flores-Soto ◽  
Verónica Chaparro-Huerta ◽  
Luis Felipe Jave-Suarez ◽  
Sofía Soto-Rodríguez ◽  
...  

Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days.Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence.Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P<0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups.Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD.


Author(s):  
Bibi-Zahra Javad-Moosavi ◽  
Gholamhassan Vaezi ◽  
Mohammad Nasehi ◽  
Seyed-Ali Haeri-Rouhani ◽  
Mohammad-Reza Zarrindast

2016 ◽  
Vol 21 (6) ◽  
pp. 794-810 ◽  
Author(s):  
Paolo Acquistapace ◽  
Anna P. Candeloro ◽  
Vladimir Georgiev ◽  
Maria L. Manca

Aim of the present study is to compare the synchronization of the classical Kuramoto system and the reaction - diffusion space time Landau - Ginzburg model, in order to describe the alternation of REM (rapid eye movement) and NREM (non-rapid eye movement) sleep across the night. These types of sleep are considered as produced by the cyclic oscillation of two neuronal populations that, alternatively, promote and inhibit the REM sleep. Even if experimental data will be necessary, a possible interpretation of the results has been proposed.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanmei Zhou ◽  
Cora Sau Wan Lai ◽  
Yang Bai ◽  
Wei Li ◽  
Ruohe Zhao ◽  
...  

Abstract In many parts of the nervous system, experience-dependent refinement of neuronal circuits predominantly involves synapse elimination. The role of sleep in this process remains unknown. We investigated the role of sleep in experience-dependent dendritic spine elimination of layer 5 pyramidal neurons in the visual (V1) and frontal association cortex (FrA) of 1-month-old mice. We found that monocular deprivation (MD) or auditory-cued fear conditioning (FC) caused rapid spine elimination in V1 or FrA, respectively. MD- or FC-induced spine elimination was significantly reduced after total sleep or REM sleep deprivation. Total sleep or REM sleep deprivation also prevented MD- and FC-induced reduction of neuronal activity in response to visual or conditioned auditory stimuli. Furthermore, dendritic calcium spikes increased substantially during REM sleep, and the blockade of these calcium spikes prevented MD- and FC-induced spine elimination. These findings reveal an important role of REM sleep in experience-dependent synapse elimination and neuronal activity reduction.


1974 ◽  
Vol 2 (4) ◽  
pp. 553-556 ◽  
Author(s):  
Wallace B. Mendelson ◽  
Robert D. Guthrie ◽  
Ghislaine Frederick ◽  
Richard Jed Wyatt

Sign in / Sign up

Export Citation Format

Share Document