Sleep characteristics, cognitive performance, and gray matter volume: findings from the BiDirect Study

SLEEP ◽  
2020 ◽  
Author(s):  
Marco Hermesdorf ◽  
András Szentkirályi ◽  
Henning Teismann ◽  
Inga Teismann ◽  
Peter Young ◽  
...  

Abstract Study Objectives Sleep is essential for restorative metabolic changes and its physiological correlates can be examined using overnight polysomnography. However, the association between physiological sleep characteristics and brain structure is not well understood. We aimed to investigate gray matter volume and cognitive performance related to physiological sleep characteristics. Methods Polysomnographic recordings from 190 community-dwelling participants were analyzed with a principal component analysis in order to identify and aggregate shared variance into principal components. The relationship between aggregated sleep components and gray matter volume was then analyzed using voxel-based morphometry. In addition, we explored how cognitive flexibility, selective attention, and semantic fluency were related to aggregated sleep components and gray matter volume. Results Three principal components were identified from the polysomnographic recordings. The first component, primarily described by apnea events and cortical arousal, was significantly associated with lower gray matter volume in the left frontal pole. This apnea-related component was furthermore associated with lower cognitive flexibility and lower selective attention. Conclusions Sleep disrupted by cortical arousal and breathing disturbances is paralleled by lower gray matter volume in the frontal pole, a proposed hub for the integration of cognitive processes. The observed effects provide new insights on the interplay between disrupted sleep, particularly breathing disturbances and arousal, and the brain.

2019 ◽  
Vol 15 (7) ◽  
pp. P207-P209
Author(s):  
Oriol Grau-Rivera ◽  
Grégory Operto ◽  
Carles Falcon ◽  
Raffaele Cacciaglia ◽  
Gonzalo Sánchez-Benavides ◽  
...  

Author(s):  
Stephen Ramanoël ◽  
Elena Hoyau ◽  
Louise Kauffmann ◽  
Félix Renard ◽  
Cédric Pichat ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Oriol Grau-Rivera ◽  
◽  
Grégory Operto ◽  
Carles Falcón ◽  
Gonzalo Sánchez-Benavides ◽  
...  

Abstract Background Mounting evidence links poor sleep quality with a higher risk of late-life dementia. However, the structural and cognitive correlates of insomnia are still not well understood. The study aims were to characterize the cognitive performance and brain structural pattern of cognitively unimpaired adults at increased risk for Alzheimer’s disease (AD) with insomnia. Methods This cross-sectional study included 1683 cognitively unimpaired middle/late-middle-aged adults from the ALFA (ALzheimer and FAmilies) study who underwent neuropsychological assessment, T1-weighted structural imaging (n = 366), and diffusion-weighted imaging (n = 334). The World Health Organization’s World Mental Health Survey Initiative version of the Composite International Diagnostic Interview was used to define the presence or absence of insomnia. Multivariable regression models were used to evaluate differences in cognitive performance between individuals with and without insomnia, as well as potential interactions between insomnia and the APOE genotype. Voxel-based morphometry and tract-based spatial statistics were used to assess between-group differences and potential interactions between insomnia and the APOE genotype in gray matter volume and white matter diffusion metrics. Results Insomnia was reported by 615 out of 1683 participants (36.5%), including 137 out of 366 (37.4%) with T1-weighted structural imaging available and 119 out of 334 (35.6%) with diffusion-weighted imaging. Individuals with insomnia (n = 615) performed worse in executive function tests than non-insomniacs and displayed lower gray matter volume in left orbitofrontal and right middle temporal cortex, bilateral precuneus, posterior cingulate cortex and thalamus, higher gray matter volume in the left caudate nucleus, and widespread reduction of mean and axial diffusivity in right hemisphere white matter tracts. Insomnia interacted with the APOE genotype, with APOE-ε4 carriers displaying lower gray matter volumes when insomnia was present, but higher volumes when insomnia was not present, in several gray matter regions, including the left angular gyrus, the bilateral superior frontal gyri, the thalami, and the right hippocampus. Conclusions Insomnia in cognitively unimpaired adults at increased risk for AD is associated to poorer performance in some executive functions and volume changes in cortical and subcortical gray matter, including key areas involved in Alzheimer’s disease, as well as decreased white matter diffusivity.


2016 ◽  
Vol 12 ◽  
pp. P547-P547
Author(s):  
Charlotte Evenepoel ◽  
Jolien Schaeverbeke ◽  
Katarzyna Adamczuk ◽  
Natalie Nelissen ◽  
Koen Van Laere ◽  
...  

Author(s):  
Julian Wenzel ◽  
◽  
Shalaila S. Haas ◽  
Dominic B. Dwyer ◽  
Anne Ruef ◽  
...  

AbstractIn schizophrenia, neurocognitive subtypes can be distinguished based on cognitive performance and they are associated with neuroanatomical alterations. We investigated the existence of cognitive subtypes in shortly medicated recent onset psychosis patients, their underlying gray matter volume patterns and clinical characteristics. We used a K-means algorithm to cluster 108 psychosis patients from the multi-site EU PRONIA (Prognostic tools for early psychosis management) study based on cognitive performance and validated the solution independently (N = 53). Cognitive subgroups and healthy controls (HC; n = 195) were classified based on gray matter volume (GMV) using Support Vector Machine classification. A cognitively spared (N = 67) and impaired (N = 41) subgroup were revealed and partially independently validated (Nspared = 40, Nimpaired = 13). Impaired patients showed significantly increased negative symptomatology (pfdr = 0.003), reduced cognitive performance (pfdr < 0.001) and general functioning (pfdr < 0.035) in comparison to spared patients. Neurocognitive deficits of the impaired subgroup persist in both discovery and validation sample across several domains, including verbal memory and processing speed. A GMV pattern (balanced accuracy = 60.1%, p = 0.01) separating impaired patients from HC revealed increases and decreases across several fronto-temporal-parietal brain areas, including basal ganglia and cerebellum. Cognitive and functional disturbances alongside brain morphological changes in the impaired subgroup are consistent with a neurodevelopmental origin of psychosis. Our findings emphasize the relevance of tailored intervention early in the course of psychosis for patients suffering from the likely stronger neurodevelopmental character of the disease.


2012 ◽  
Vol 43 (01) ◽  
Author(s):  
M Obermann ◽  
R Rodriguez-Raecke ◽  
S Nägel ◽  
D Holle ◽  
N Theysohn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document