scholarly journals Hippocampal Resting-State Functional Connectivity Patterns are More Closely Associated with Severity of Subjective Memory Decline than Whole Hippocampal and Subfield Volumes

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Lauren Zajac ◽  
Bang-Bon Koo ◽  
Yorghos Tripodis ◽  
Asim Mian ◽  
Eric Steinberg ◽  
...  

Abstract The goal of this study was to examine whether hippocampal volume or resting-state functional connectivity (rsFC) patterns are associated with subjective memory decline (SMD) in cognitively normal aged adults. Magnetic resonance imaging data from 53 participants (mean age: 71.9 years) of the Boston University Alzheimer’s Disease Center registry were used in this cross-sectional study. Separate analyses treating SMD as a binary and continuous variable were performed. Subfield volumes were generated using FreeSurfer v6.0, and rsFC strength between the head and body of the hippocampus and the rest of the brain was calculated. Decreased left whole hippocampal volume and weaker rsFC strength between the right body of the hippocampus and the default mode network (DMN) were found in SMD+. Cognitive Change Index score was not correlated with volumetric measures but was inversely correlated with rsFC strength between the right body of the hippocampus and 6 brain networks, including the DMN, task control, and attentional networks. These findings suggest that hippocampal rsFC patterns reflect the current state of SMD in cognitively normal adults and may reflect subtle memory changes that standard neuropsychological tests are unable to capture.

2020 ◽  
Vol 32 (6) ◽  
pp. 1130-1141
Author(s):  
Anne-Sophie Käsbauer ◽  
Paola Mengotti ◽  
Gereon R. Fink ◽  
Simone Vossel

Although multiple studies characterized the resting-state functional connectivity (rsFC) of the right temporoparietal junction (rTPJ), little is known about the link between rTPJ rsFC and cognitive functions. Given a putative involvement of rTPJ in both reorienting of attention and the updating of probabilistic beliefs, this study characterized the relationship between rsFC of rTPJ with dorsal and ventral attention systems and these two cognitive processes. Twenty-three healthy young participants performed a modified location-cueing paradigm with true and false prior information about the percentage of cue validity to assess belief updating and attentional reorienting. Resting-state fMRI was recorded before and after the task. Seed-based correlation analysis was employed, and correlations of each behavioral parameter with rsFC before the task, as well as with changes in rsFC after the task, were assessed in an ROI-based approach. Weaker rsFC between rTPJ and right intraparietal sulcus before the task was associated with relatively faster updating of the belief that the cue will be valid after false prior information. Moreover, relatively faster belief updating, as well as faster reorienting, were related to an increase in the interhemispheric rsFC between rTPJ and left TPJ after the task. These findings are in line with task-based connectivity studies on related attentional functions and extend results from stroke patients demonstrating the importance of interhemispheric parietal interactions for behavioral performance. The present results not only highlight the essential role of parietal rsFC for attentional functions but also suggest that cognitive processing during a task changes connectivity patterns in a performance-dependent manner.


2021 ◽  
Author(s):  
Timothy P. Morris ◽  
Aaron Kucyi ◽  
Sheeba Arnold Anteraper ◽  
Maiya Rachel Geddes ◽  
Alfonso Nieto-Castañon ◽  
...  

AbstractInformation about a person’s available energy resources is integrated in daily behavioral choices that weigh motor costs against expected rewards. It has been posited that humans have an innate attraction towards effort minimization and that executive control is required to overcome this prepotent disposition. With sedentary behaviors increasing at the cost of millions of dollars spent in health care and productivity losses due to physical inactivity-related deaths, understanding the predictors of sedentary behaviors will improve future intervention development and precision medicine approaches. In 64 healthy older adults participating in a 6-month aerobic exercise intervention, we use neuroimaging (resting state functional connectivity), baseline measures of executive function and accelerometer measures of time spent sedentary to predict future changes in objectively measured time spent sedentary in daily life. Using cross-validation and bootstrap resampling, our results demonstrate that functional connectivity between 1) the anterior cingulate cortex and the supplementary motor area and 2) the right anterior insula and the left temporoparietal/temporooccipital junction, predict changes in time spent sedentary, whereas baseline cognitive, behavioral and demographic measures do not. Previous research has shown activation in and between the anterior cingulate and supplementary motor area as well as in the right anterior insula during effort avoidance and tasks that integrate motor costs and reward benefits in effort-based decision making. Our results add important knowledge toward understanding mechanistic associations underlying complex sedentary behaviors.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Chemin Lin ◽  
Maria Ly ◽  
Helmet T. Karim ◽  
Wenjing Wei ◽  
Beth E. Snitz ◽  
...  

Abstract Background Pathological processes contributing to Alzheimer’s disease begin decades prior to the onset of clinical symptoms. There is significant variation in cognitive changes in the presence of pathology, functional connectivity may be a marker of compensation to amyloid; however, this is not well understood. Methods We recruited 64 cognitively normal older adults who underwent neuropsychological testing and biannual magnetic resonance imaging (MRI), amyloid imaging with Pittsburgh compound B (PiB)-PET, and glucose metabolism (FDG)-PET imaging for up to 6 years. Resting-state MRI was used to estimate connectivity of seven canonical neural networks using template-based rotation. Using voxel-wise paired t-tests, we identified neural networks that displayed significant changes in connectivity across time. We investigated associations among amyloid and longitudinal changes in connectivity and cognitive function by domains. Results Left middle frontal gyrus connectivity within the memory encoding network increased over time, but the rate of change was lower with greater amyloid. This was no longer significant in an analysis where we limited the sample to only those with two time points. We found limited decline in cognitive domains overall. Greater functional connectivity was associated with better attention/processing speed and executive function (independent of time) in those with lower amyloid but was associated with worse function with greater amyloid. Conclusions Increased functional connectivity serves to preserve cognitive function in normal aging and may fail in the presence of pathology consistent with compensatory models.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Woo-Sung Kim ◽  
Guangfan Shen ◽  
Congcong Liu ◽  
Nam-In Kang ◽  
Keon-Hak Lee ◽  
...  

Abstract Altered resting-state functional connectivity (FC) of the amygdala (AMY) has been demonstrated to be implicated in schizophrenia (SZ) and attenuated psychosis syndrome (APS). Specifically, no prior work has investigated FC in individuals with APS using subregions of the AMY as seed regions of interest. The present study examined AMY subregion-based FC in individuals with APS and first-episode schizophrenia (FES) and healthy controls (HCs). The resting state FC maps of the three AMY subregions were computed and compared across the three groups. Correlation analysis was also performed to examine the relationship between the Z-values of regions showing significant group differences and symptom rating scores. Individuals with APS showed hyperconnectivity between the right centromedial AMY (CMA) and left frontal pole cortex (FPC) and between the laterobasal AMY and brain stem and right inferior lateral occipital cortex compared to HCs. Patients with FES showed hyperconnectivity between the right superficial AMY and left occipital pole cortex and between the left CMA and left thalamus compared to the APS and HCs respectively. A negative relationship was observed between the connectivity strength of the CMA with the FPC and negative-others score of the Brief Core Schema Scales in the APS group. We observed different altered FC with subregions of the AMY in individuals with APS and FES compared to HCs. These results shed light on the pathogenetic mechanisms underpinning the development of APS and SZ.


2020 ◽  
Vol 84 (1) ◽  
pp. 21-34
Author(s):  
Cassandra Jennings ◽  
Savannah Gosnell ◽  
Kaylah N. Curtis ◽  
Thomas Kosten ◽  
Ramiro Salas

This study aimed to examine habenular resting state functional connectivity (RSFC) abnormalities in tobacco-smoking veterans. The authors explored RSFC in sated smokers (n = 3D 18), overnight deprived smokers (n = 3D 13), and nonsmoker controls (n = 3D 26). Seed-to-voxel analysis was used to explore RSFC in the habenula. Compared to sated smokers, deprived smokers demonstrated higher RSFC between the right habenula and two clusters of voxels: one in the right fusiform gyrus, and one in the left lingual gyrus. To study nicotine withdrawal, the authors used the Shiffman-Jarvik Withdrawal Questionnaire (SJWQ) score as a regressor and found higher RSFC between the right habenula and the left frontal pole in deprived compared to sated smokers. Right habenula RSFC distinguished between sated and deprived smokers and differentiated between sated and deprived smokers when using SJWQ as a regressor, suggesting a habenular role in tobacco withdrawal.


2016 ◽  
Author(s):  
Xin Di ◽  
Bharat B Biswal

Background: Males are more likely to suffer from autism spectrum disorder (ASD) than females. As to whether females with ASD have similar brain alterations remain an open question. The current study aimed to examine sex-dependent as well as sex-independent alterations in resting-state functional connectivity in individuals with ASD compared with typically developing (TD) individuals. Method: Resting-state functional MRI data were acquired from the Autism Brain Imaging Data Exchange (ABIDE). Subjects between 6 to 20 years of age were included for analysis. After matching the intelligence quotient between groups for each dataset, and removing subjects due to excessive head motion, the resulting effective sample contained 28 females with ASD, 49 TD females, 129 males with ASD, and 141 TD males, with a two (diagnosis) by two (sex) design. Functional connectivity among 153 regions of interest (ROIs) comprising the whole brain was computed. Two by two analysis of variance was used to identify connectivity that showed diagnosis by sex interaction or main effects of diagnosis. Results: The main effects of diagnosis were found mainly between visual cortex and other brain regions, indicating sex-independent connectivity alterations. We also observed two connections whose connectivity showed diagnosis by sex interaction between the precuneus and medial cerebellum as well as the precunes and dorsal frontal cortex. While males with ASD showed higher connectivity in these connections compared with TD males, females with ASD had lower connectivity than their counterparts. Conclusions: Both sex-dependent and sex-independent functional connectivity alterations are present in ASD.


2018 ◽  
Author(s):  
Kristina M. Deligiannidis ◽  
Christina L. Fales ◽  
Aimee R. Kroll-Desrosiers ◽  
Scott A. Shaffer ◽  
Vanessa Villamarin ◽  
...  

ABSTRACTPostpartum depression (PPD) is associated with abnormalities in resting-state functional connectivity (RSFC) but the underlying neurochemistry is unclear. We hypothesized that peripartum GABAergic neuroactive steroids (NAS) are related to cortical GABA concentrations and RSFC in PPD as compared to healthy comparison women (HCW). To test this, we measured RSFC with fMRI and GABA+/Creatine (Cr) concentrations with proton magnetic resonance spectroscopy (1H MRS) in the pregenual anterior cingulate (pgACC) and occipital cortices (OCC) and quantified peripartum plasma NAS. We examined between-group differences in RSFC and the relationship between cortical GABA+/Cr concentrations with RSFC. We investigated the relationship between NAS, RSFC and cortical GABA+/Cr concentrations. Within the default mode network (DMN) an area of the dorsomedial prefrontal cortex (DMPFC) had greater connectivity with the rest of the DMN in PPD (peak voxel: MNI coordinates (2, 58, 32), p=0.002) and was correlated to depression scores (peak HAM-D17 voxel: MNI coordinates (0, 60, 34), p=0.008). pgACC GABA+/Cr correlated positively with DMPFC RSFC in a region spanning the right anterior/posterior insula and right temporal pole (r=+0.661, p=0.000). OCC GABA+/Cr correlated positively with regions spanning both amygdalae (right amygdala: r=+0.522, p=0.000; left amygdala: r=+0.651, p=0.000) as well as superior parietal areas. Plasma allopregnanolone was higher in PPD (p=0.03) and positively correlated with intra DMPFC connectivity (r=+0.548, p=0.000) but not GABA+/Cr. These results provide initial evidence that PPD is associated with altered DMN connectivity; cortical GABA+/Cr concentrations are associated with postpartum RSFC and allopregnanolone is associated with postpartum intra-DMPFC connectivity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Naoki Okamoto ◽  
Hiroyuki Akama

Herein, we propose a new deep neural network model based on invariant information clustering (IIC), proposed by Ji et al., to improve the modeling performance of the leave-one-site-out cross-validation (LOSO-CV) for a multi-source dataset. Our Extended IIC (EIIC) is a type of contrastive learning; however, unlike the original IIC, it is characterized by transfer learning with labeled data pairs, but without the need for a data augmentation technique. Each site in LOSO-CV is left out in turn from the remaining sites used for training and receives a value for modeling evaluation. We applied the EIIC to the resting state functional connectivity magnetic resonance imaging dataset of the Autism Brain Imaging Data Exchange. The challenging nature of brain analysis for autism spectrum disorder (ASD) can be attributed to the variability of subjects, particularly the rapid change in the neural system of children as the target ASD age group. However, EIIC demonstrated higher LOSO-CV classification accuracy for the majority of scanning locations than previously used methods. Particularly, with the adjustment of a mini-batch size, EIIC outperformed other classifiers with an accuracy >0.8 for the sites with highest mean age of the subjects. Considering its effectiveness, our proposed method might be promising for harmonization in other domains, owing to its simplicity and intrinsic flexibility.


Sign in / Sign up

Export Citation Format

Share Document