scholarly journals Applicability of hiPSC-Derived Neuronal Cocultures and Rodent Primary Cortical Cultures for In Vitro Seizure Liability Assessment

2020 ◽  
Vol 178 (1) ◽  
pp. 71-87
Author(s):  
Anke M Tukker ◽  
Fiona M J Wijnolts ◽  
Aart de Groot ◽  
Remco H S Westerink

Abstract Seizures are life-threatening adverse drug reactions which are investigated late in drug development using rodent models. Consequently, if seizures are detected, a lot of time, money and animals have been used. Thus, there is a need for in vitro screening models using human cells to circumvent interspecies translation. We assessed the suitability of cocultures of human-induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared with rodent primary cortical cultures for in vitro seizure liability assessment using microelectrode arrays. hiPSC-derived and rodent primary cortical neuronal cocultures were exposed to 9 known (non)seizurogenic compounds (pentylenetetrazole, amoxapine, enoxacin, amoxicillin, linopirdine, pilocarpine, chlorpromazine, phenytoin, and acetaminophen) to assess effects on neuronal network activity using microelectrode array recordings. All compounds affect activity in hiPSC-derived cocultures. In rodent primary cultures all compounds, except amoxicillin changed activity. Changes in activity patterns for both cell models differ for different classes of compounds. Both models had a comparable sensitivity for exposure to amoxapine (lowest observed effect concentration [LOEC] 0.03 µM), linopirdine (LOEC 1 µM), and pilocarpine (LOEC 0.3 µM). However, hiPSC-derived cultures were about 3 times more sensitive for exposure to pentylenetetrazole (LOEC 30 µM) than rodent primary cortical cultures (LOEC 100 µM). Sensitivity of hiPSC-derived cultures for chlorpromazine, phenytoin, and enoxacin was 10-30 times higher (LOECs 0.1, 0.3, and 0.1 µM, respectively) than in rodent cultures (LOECs 10, 3, and 3 µM, respectively). Our data indicate that hiPSC-derived neuronal cocultures may outperform rodent primary cortical cultures with respect to detecting seizures, thereby paving the way towards animal-free seizure assessment.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tanja Hyvärinen ◽  
Anu Hyysalo ◽  
Fikret Emre Kapucu ◽  
Laura Aarnos ◽  
Andrey Vinogradov ◽  
...  

AbstractHuman pluripotent stem cell (hPSC)-derived neurons provide exciting opportunities for in vitro modeling of neurological diseases and for advancing drug development and neurotoxicological studies. However, generating electrophysiologically mature neuronal networks from hPSCs has been challenging. Here, we report the differentiation of functionally active hPSC-derived cortical networks on defined laminin-521 substrate. We apply microelectrode array (MEA) measurements to assess network events and compare the activity development of hPSC-derived networks to that of widely used rat embryonic cortical cultures. In both of these networks, activity developed through a similar sequence of stages and time frames; however, the hPSC-derived networks showed unique patterns of bursting activity. The hPSC-derived networks developed synchronous activity, which involved glutamatergic and GABAergic inputs, recapitulating the classical cortical activity also observed in rodent counterparts. Principal component analysis (PCA) based on spike rates, network synchronization and burst features revealed the segregation of hPSC-derived and rat network recordings into different clusters, reflecting the species-specific and maturation state differences between the two networks. Overall, hPSC-derived neural cultures produced with a defined protocol generate cortical type network activity, which validates their applicability as a human-specific model for pharmacological studies and modeling network dysfunctions.


2020 ◽  
Author(s):  
Michelle C. Ward ◽  
Nicholas E. Banovich ◽  
Abhishek Sarkar ◽  
Matthew Stephens ◽  
Yoav Gilad

AbstractOne life-threatening outcome of cardiovascular disease is myocardial infarction, where cardiomyocytes are deprived of oxygen. To study inter-individual differences in response to hypoxia, we established an in vitro model of induced pluripotent stem cell-derived cardiomyocytes from 15 individuals. We measured gene expression levels, chromatin accessibility, and methylation levels in four culturing conditions that correspond to normoxia, hypoxia and short or long-term re-oxygenation. We characterized thousands of gene regulatory changes as the cells transition between conditions. Using available genotypes, we identified 1,573 genes with a cis expression quantitative locus (eQTL) in at least one condition, as well as 367 dynamic eQTLs, which are classified as eQTLs in at least one, but not in all conditions. A subset of genes with dynamic eQTLs is associated with complex traits and disease. Our data demonstrate how dynamic genetic effects on gene expression, which are likely relevant for disease, can be uncovered under stress.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Michelle C Ward ◽  
Nicholas E Banovich ◽  
Abhishek Sarkar ◽  
Matthew Stephens ◽  
Yoav Gilad

One life-threatening outcome of cardiovascular disease is myocardial infarction, where cardiomyocytes are deprived of oxygen. To study inter-individual differences in response to hypoxia, we established an in vitro model of induced pluripotent stem cell-derived cardiomyocytes from 15 individuals. We measured gene expression levels, chromatin accessibility, and methylation levels in four culturing conditions that correspond to normoxia, hypoxia, and short- or long-term re-oxygenation. We characterized thousands of gene regulatory changes as the cells transition between conditions. Using available genotypes, we identified 1,573 genes with a cis expression quantitative locus (eQTL) in at least one condition, as well as 367 dynamic eQTLs, which are classified as eQTLs in at least one, but not in all conditions. A subset of genes with dynamic eQTLs is associated with complex traits and disease. Our data demonstrate how dynamic genetic effects on gene expression, which are likely relevant for disease, can be uncovered under stress.


2012 ◽  
Vol 17 (9) ◽  
pp. 1192-1203 ◽  
Author(s):  
Tadahiro Shinozawa ◽  
Kenichi Imahashi ◽  
Hiroshi Sawada ◽  
Hatsue Furukawa ◽  
Kenji Takami

Human-induced pluripotent stem cell–derived cardiomyocytes (hiPS-CMs) at different stages (approximate days 30, 60, and 90) were used to determine the appropriate stage for functional and morphological assessment of drug effects in vitro. The hiPS-CMs had spontaneous beating activity, and β-adrenergic function was comparable in all stages of differentiation. Microelectrode array analyses using ion channel blockers indicated that the electrophysiological properties of these ion channels were comparable at all differentiation stages. Ultrastructural analysis using electron microscopy showed that myofibrillar structures at days 60 and 90 were similarly distributed and more mature than that at day 30. Analysis of motion vectors in contracting cells showed that the velocity of contraction was the highest at day 90 and was the most mature among the three stages. Gene expression analysis demonstrated that expression of some genes related to myofilament and sarcoplasmic reticulum increased with maturation of morphological and contractile properties. In conclusion, day 30 cardiomyocytes are useful for basic screening such as the assessment of electrophysiological properties, and days 60 and 90 are the appropriate differentiation stage for morphological assays. For the assay of contractile function associated with subcellular components such as sarcoplasmic reticulum, day 90 cardiomyocytes are the most suitable.


2019 ◽  
Author(s):  
T.M. Klein Gunnewiek ◽  
E. J. H. Van Hugte ◽  
M. Frega ◽  
G. Solé Guardia ◽  
K.B. Foreman ◽  
...  

SummaryEpilepsy, intellectual and cortical sensory deficits and psychiatric manifestations are among the most frequent manifestations of mitochondrial diseases. Yet, how mitochondrial dysfunction affects neural structure and function remains largely elusive. This is mostly due to the lack of a proper in vitro translational neuronal model system(s) with impaired energy metabolism. Leveraging the induced pluripotent stem cell technology, from a cohort of patients with the common pathogenic m.3243A>G variant of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), we differentiated excitatory cortical neurons (iNeurons) with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function on an isogenic nuclear DNA background. iNeurons with high levels of heteroplasmy exhibited mitochondrial dysfunction, delayed neural maturation, reduced dendritic complexity and fewer functional excitatory synapses. Micro-electrode array recordings of neuronal networks with high heteroplasmy displayed reduced network activity and decreased synchronous network bursting. The impaired neural energy metabolism of iNeurons compromising the structural and functional integrity of neurons and neural networks, could be the primary driver of increased susceptibility to neuropsychiatric manifestations of mitochondrial disease.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

2021 ◽  
Vol 13 ◽  
pp. 251584142199719
Author(s):  
Simranjeet Singh Grewal ◽  
Joseph J. Smith ◽  
Amanda-Jayne F. Carr

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 ( BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.


2021 ◽  
Author(s):  
Maryna Psol ◽  
Sofia Guerin Darvas ◽  
Kristian Leite ◽  
Sameehan U Mahajani ◽  
Mathias Bähr ◽  
...  

Abstract ß-Synuclein (ß-Syn) has long been considered to be an attenuator for the neuropathological effects caused by the Parkinson’s disease-related α-Synuclein (α-Syn) protein. However, recent studies demonstrated that overabundant ß-Syn can form aggregates and induce neurodegeneration in CNS neurons in vitro and in vivo, albeit at a slower pace as compared to α-Syn. Here we demonstrate that ß-Syn mutants V70M, detected in a sporadic case of Dementia with Lewy Bodies (DLB), and P123H, detected in a familial case of DLB, robustly aggravate the neurotoxic potential of ß-Syn. Intriguingly, the two mutations trigger mutually exclusive pathways. ß-Syn V70M enhances morphological mitochondrial deterioration and degeneration of dopaminergic and non-dopaminergic neurons, but has no influence on neuronal network activity. Conversely, ß-Syn P123H silences neuronal network activity, but does not aggravate neurodegeneration. ß-Syn WT, V70M and P123H formed proteinase K (PK) resistant intracellular fibrils within neurons, albeit with less stable C-termini as compared to α-Syn. Under cell free conditions, ß-Syn V70M demonstrated a much slower pace of fibril formation as compared to WT ß-Syn, and P123H fibrils present with a unique phenotype characterized by large numbers of short, truncated fibrils. Thus, it is possible that V70M and P123H cause structural alterations in ß-Syn, that are linked to their distinct neuropathological profiles. The extent of the lesions caused by these neuropathological profiles is almost identical to that of overabundant α-Syn, and thus likely to be directly involved into etiology of DLB. Over all, this study provides insights into distinct disease mechanisms caused by mutations of ß-Syn.


Sign in / Sign up

Export Citation Format

Share Document