scholarly journals Effects of Atrazine on CYP19 Gene Expression and Aromatase Activity in Testes and on Plasma Sex Steroid Concentrations of Male African Clawed Frogs (Xenopus laevis)

2005 ◽  
Vol 86 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Markus Hecker ◽  
June-Woo Park ◽  
Margaret B. Murphy ◽  
Paul D. Jones ◽  
Keith R. Solomon ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Edwin D. Lephart

The aromatase enzyme catalyzes the conversion of androgens to estrogens in many human tissues. Estrogens are known to stimulate cellular proliferation associated with certain cancers and protect against adverse symptoms during the peri- and postmenopausal intervals. Phytoestrogens are a group of plant derived naturally occurring compounds that have chemical structures similar to estrogen. Since phytoestrogens are known to be constituents of animal/human food sources, these compounds have received increased research attention. Phytoestrogens may contribute to decreased cancer risk by the inhibition of aromatase enzyme activity and CYP19 gene expression in human tissues. This review covers (a) the aromatase enzyme (historical descriptions on function, activity, and gene characteristics), (b) phytoestrogens in their classifications and applications to human health, and (c) a chronological coverage of aromatase activity modulated by phytoestrogens from the early 1980s to 2015. In general, phytoestrogens act as aromatase inhibitors by (a) decreasing aromatase gene expression, (b) inhibiting the aromatase enzyme itself, or (c) in some cases acting at both levels of regulation. The findings presented herein are consistent with estrogen’s impact on health and phytoestrogen’s potential as anticancer treatments, but well-controlled, large-scale studies are warranted to determine the effectiveness of phytoestrogens on breast cancer and age-related diseases.


2005 ◽  
Vol 62 (2) ◽  
pp. 160-173 ◽  
Author(s):  
Katherine K. Coady ◽  
Margaret B. Murphy ◽  
Daniel L. Villeneuve ◽  
Markus Hecker ◽  
Paul D. Jones ◽  
...  

1996 ◽  
Vol 59 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Pascal Sourdaine ◽  
Peter Mullen ◽  
Roger White ◽  
June Telford ◽  
Malcolm G. Parker ◽  
...  

1991 ◽  
Vol 11 (10) ◽  
pp. 5079-5089 ◽  
Author(s):  
D E Banker ◽  
J Bigler ◽  
R N Eisenman

The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development.


1989 ◽  
Vol 9 (11) ◽  
pp. 5244-5247
Author(s):  
N Benvenisty ◽  
T Shoshani ◽  
Y Farkash ◽  
H Soreq ◽  
L Reshef

To study the liver-specific trans activation of the rat phosphoenolpyruvate carboxykinase (PEPCK) gene, the PEPCK promoter was linked to a reporter gene and was microinjected into Xenopus laevis oocytes alone or in conjunction with rat liver poly(A)+ RNA. The rat liver mRNA markedly enhanced the expression of the PEPCK-chimeric construct. This effect appeared to be sequence specific, as it was dependent on the presence of the intact promoter. Moreover, the RNA effect was limited to mRNA preparations from PEPCK-expressing tissues only. Finally, microinjection of size-fractionated liver mRNA revealed that the trans-acting factor(s) is encoded by RNA of 1,600 to 2,000 nucleotides, providing a direct bioassay for the gene(s) involved in this tissue-specific trans-activation process.


2007 ◽  
Vol 82 (4) ◽  
pp. 227-241 ◽  
Author(s):  
Caren C. Helbing ◽  
Carmen M. Bailey ◽  
Lan Ji ◽  
Mark P. Gunderson ◽  
Fang Zhang ◽  
...  

2018 ◽  
Vol 215 (3) ◽  
pp. 519-527 ◽  
Author(s):  
Divya Mehta ◽  
Monika Rex-Haffner ◽  
Helle Bach Søndergaard ◽  
Anja Pinborg ◽  
Elisabeth B. Binder ◽  
...  

BackgroundEnhanced sensitivity to oestrogen signalling may drive increased risk for depressive symptoms when exposed to peripartum sex-steroid hormone fluctuations.AimTesting if 116 pre-identified sex steroid-responsive transcripts that predicted perinatal depression (PND) translates to a pharmacological model of hormone-induced mood changes.MethodWe generated longitudinal, genome-wide gene-expression and DNA-methylation data from 60 women exposed to a gonadotrophin-releasing hormone agonist (GnRHa) or placebo. We used linear mixed-effect models to assess differences between baseline and follow-up for gene expression and DNA methylation in the biphasic ovarian response to GnRHa.ResultsOf the 116 PND-predictive transcripts, a significant (19%) overlap was observed with those differentially expressed post-GnRHa at both early and later follow-up, indicating sustained effects. Similarly, 49% of tested genes were differentially methylated post-GnRHa at the late follow-up. Within the GnRHa group, a large proportion of PND genes were significantly associated (gene expression; DNA methylation) with changes in depressive symptoms (28%; 66%), oestradiol levels (49%; 66%) and neocortex serotonin transporter binding (8%; 45%) between baseline and follow-up.ConclusionsOur data bridge clinical PND biomarkers with a pharmacological model of sex hormone-induced mood changes and directly relate oestrogen-induced biological changes with depressive symptoms and associated serotonin-signalling changes. Our data highlight that individual variations in molecular sensitivity to oestrogen associate with susceptibility to hormone-induced mood changes and hold promise for candidate biomarkers.Declaration of interestV.G.F. received honorarium for being a speaker for H. Lundbeck A/S. E.B.B. receives research funding from Böhringer Ingelheim to investigate FKBP5 as a potential drug target for depression.


Sign in / Sign up

Export Citation Format

Share Document