chimeric construct
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 20)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 22 (23) ◽  
pp. 13033
Author(s):  
Ewan Richardson ◽  
Bartek J. Troczka ◽  
Oliver Gutbrod ◽  
Ulrich Ebbinghaus-Kintscher ◽  
Martin S. Williamson ◽  
...  

Alterations to amino acid residues G4946 and I4790, associated with resistance to diamide insecticides, suggests a location of diamide interaction within the pVSD voltage sensor-like domain of the insect ryanodine receptor (RyR). To further delineate the interaction site(s), targeted alterations were made within the same pVSD region on the diamondback moth (Plutella xylostella) RyR channel. The editing of five amino acid positions to match those found in the diamide insensitive skeletal RyR1 of humans (hRyR1) in order to generate a human–Plutella chimeric construct showed that these alterations strongly reduce diamide efficacy when introduced in combination but cause only minor reductions when introduced individually. It is concluded that the sites of diamide interaction on insect RyRs lie proximal to the voltage sensor-like domain of the RyR and that the main site of interaction is at residues K4700, Y4701, I4790 and S4919 in the S1 to S4 transmembrane domains.


Author(s):  
Fahimeh Sadat Emami Mahmoudabadi ◽  
Atina Vakili ◽  
Shahram Nazarian ◽  
Jafar Amani ◽  
Seyed Latif Mousavi Gargari

Shigella and Salmonella cause serious problems in many subjects, including young children and the elderly, especially in developing countries. Chimeric proteins carrying immunogens increase immune response. In-silico tools are applied to design vaccine candidates. Invasion plasmid antigens D (ipaD) gene is one of the Shigella virulence factors. The N-terminal region of the IpaD plays a significant role in invading the host cell. Invasion protein H (invH) gene plays important role in bacterial adherence and entry into epithelial cells. A recombinant chimeric construct, containing IpaD and InvH was designed and used as a vaccine candidate against Shigella and Salmonella enteritidis. After bioinformatics assessments, the construct was designed, synthesized, and expressed in E.coli. Chimeric protein, IpaD, and InvH were purified with Ni-NTA chromatography. Purified proteins were confirmed with western blotting and then were injected into separate mice groups. The antibody titer was estimated with an enzyme-linked immunosorbent assay (ELISA). Mice were challenged with 10, 100, and 1000 LD50 of Salmonella, and the sereny test was performed for Shigella. The Codon adaptation index of the chimeric gene was increased to 0.84. Validation results showed that 97.9% of residues lie in the favored or additional allowed region of the Ramachandran plot. A significant antibody rise was observed in all test groups. The immunized mice with chimer and InvH could tolerate 100 LD50 of Salmonella. In the sereny test, the application of bacteria treated with immunized mice sera of both antigens showed no infection in Guinea pigs' eyes. The recombinant protein could protect animal models against Salmonella and Shigella and therefore can be considered as a suitable vaccine candidate against these two pathogens.


Author(s):  
Khalid Mohamed Adam

Abstract Background The lack of effective treatment against the highly infectious SARS-CoV-2 has aggravated the already catastrophic global health issue. Here, in an attempt to design an efficient vaccine, a thorough immunoinformatics approach was followed to predict the most suitable viral proteins epitopes for building that vaccine. Methods The amino acid sequences of four structural proteins (S, M, N, E) along with one potentially antigenic accessory protein (ORF1a) of SARS-CoV-2 were inspected for the most appropriate epitopes to be used for building the vaccine construct. Several immunoinformatics tools were used to assess the antigenicity (VaxiJen server), immunogenicity (IEDB immunogenicity tool), allergenicity (AlgPred), toxigenicity (ToxinPred server), interferon-gamma inducing capacity (IFNepitope server), and the physicochemical properties of the construct (ProtParam tool). Results The final candidate vaccine construct consisted of 468 amino acids, encompassing 29 epitopes. The CTL epitopes that passed the antigenicity, allergenicity, toxigenicity and immunogenicity assessment were four epitopes from S protein, one from M protein, two from N protein, 12 from the ORF1a polyprotein and none from E protein. While the HTL epitopes that passed the antigenicity, allergenicity, toxigenicity and INF-$$\gamma$$ γ were one from S protein, three from M protein, six from the ORF1a polyprotein and none from N and E proteins. All the vaccine properties and its ability to trigger the humoral and cell-mediated immune response were validated computationally. Molecular modeling, docking to TLR3, simulation, and molecular dynamics were also carried out. Finally, a molecular clone using pET28::mAID expression plasmid vector was prepared. Conclusion The overall results of the study suggest that the final multi-epitope chimeric construct is a potential candidate for an efficient protective vaccine against SARS-CoV-2.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A497-A497
Author(s):  
Diana A Stavreva ◽  
Lyuba Varticovski ◽  
Razi Raziuddin ◽  
Gordon L Hager

Abstract The presence of progesterone receptor (PR)-interacting compounds in the environment may have serious health consequences for humans and wildlife, but the methods for their detection and monitoring are limited. Here we report the development and testing of a cell line expressing a chimeric construct containing ligand-binding domain of progesterone receptor and green fluorescent protein-tagged domain of the glucocorticoid receptor (GFP-GR-PR) under tetracycline regulation. Unlike the constitutively nuclear PR, this chimera is cytoplasmic in the absence of the ligand and translocates to the nucleus in response to the hormone or its analogues. The GFP-GR-PR chimera maintains specificity for binding to progesterone and does not cross-react with GR-activating hormones. A concentration- and time-dependent translocation in response to progesterone confirmed picomolar sensitivity for detecting PR ligands. Importantly, the assay can detect both agonist and antagonist activities and thus can be used for screening environmental samples for contamination with endocrine disruptors and for drug development. Using this approach, we screened water samples collected at 23 sites along 2 major rivers in Virginia: Mattaponi and Rappahannock Rivers. We detected a low, but reproducible PR-binding activity in 34.8 % of the sites tested. The calculated progesterone equivalent concentration (EQ) in some of these sites reached ~ 0.8 ng/L. The assay provides an effect-based approach for screening PR-interacting endocrine disrupting chemicals regardless of whether they exert agonist or antagonist activities. Either one could be seriously disruptive for the health of humans and wildlife.


2021 ◽  
Vol 9 (4) ◽  
pp. 805
Author(s):  
Sandra Martínez-Turiño ◽  
María Calvo ◽  
Leonor Cecilia Bedoya ◽  
Mingmin Zhao ◽  
Juan Antonio García

Understanding biological mechanisms that regulate emergence of viral diseases, in particular those events engaging cross-species pathogens spillover, is becoming increasingly important in virology. Species barrier jumping has been extensively studied in animal viruses, and the critical role of a suitable intermediate host in animal viruses-generated human pandemics is highly topical. However, studies on host jumping involving plant viruses have been focused on shifting intra-species, leaving aside the putative role of “bridge hosts” in facilitating interspecies crossing. Here, we take advantage of several VPg mutants, derived from a chimeric construct of the potyvirus Plum pox virus (PPV), analyzing its differential behaviour in three herbaceous species. Our results showed that two VPg mutations in a Nicotiana clevelandii-adapted virus, emerged during adaptation to the bridge-host Arabidopsis thaliana, drastically prompted partial adaptation to Chenopodium foetidum. Although both changes are expected to facilitate productive interactions with eIF(iso)4E, polymorphims detected in PPV VPg and the three eIF(iso)4E studied, extrapolated to a recent VPg:eIF4E structural model, suggested that two adaptation ways can be operating. Remarkably, we found that VPg mutations driving host-range expansion in two non-related species, not only are not associated with cost trade-off constraints in the original host, but also improve fitness on it.


Author(s):  
Sandra Martínez-Turiño ◽  
María Calvo ◽  
Leonor Cecilia Bedoya ◽  
Mingmin Zhao ◽  
Juan Antonio García

Understanding biological mechanisms that regulate emergence of viral diseases, in particular those events engaging cross-species pathogens spillover, are becoming increasingly important in Virology. Species barrier jumping has been extensively studied in animal viruses, and the critical role of a suitable intermediate host in animal viruses-generated human pandemics is highly topical. However, studies on host jumping involving plant viruses have been focused on shifting intra-species, leaving aside the putative role of “bridge hosts” in facilitating interspecies crossing. Here, we take advantage of several VPg mutants, derived from a chimeric construct of the potyvirus Plum pox virus (PPV), analysing its differential behaviour in three herbaceous species. Our results showed that two VPg mutations in a Nicotiana clevelandii-adapted virus, emerged during adaptation to the bridge-host Arabidopsis thaliana, drastically prompted partial adaptation to Chenopodium foetidum. Although, both changes are expected to facilitate productive interactions with eIF(iso)4E, polymorphims detected in PPV VPg and the three eIF(iso)4E studied, extrapolated to a recent VPg:eIF4E structural model, suggested that two adaptation ways can be operating. Remarkably, we found that VPg mutations driving host-range expansion in two non-related species, not only are not associated with cost trade-off constraints in the original host, but also improve fitness on it.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Cristina Olivieri ◽  
Caitlin Walker ◽  
Adak Karamafrooz ◽  
Yingjie Wang ◽  
V. S. Manu ◽  
...  

AbstractAn aberrant fusion of the DNAJB1 and PRKACA genes generates a chimeric protein kinase (PKA-CDNAJB1) in which the J-domain of the heat shock protein 40 is fused to the catalytic α subunit of cAMP-dependent protein kinase A (PKA-C). Deceivingly, this chimeric construct appears to be fully functional, as it phosphorylates canonical substrates, forms holoenzymes, responds to cAMP activation, and recognizes the endogenous inhibitor PKI. Nonetheless, PKA-CDNAJB1 has been recognized as the primary driver of fibrolamellar hepatocellular carcinoma and is implicated in other neoplasms for which the molecular mechanisms remain elusive. Here we determined the chimera’s allosteric response to nucleotide and pseudo-substrate binding. We found that the fusion of the dynamic J-domain to PKA-C disrupts the internal allosteric network, causing dramatic attenuation of the nucleotide/PKI binding cooperativity. Our findings suggest that the reduced allosteric cooperativity exhibited by PKA-CDNAJB1 alters specific recognitions and interactions between substrates and regulatory partners contributing to dysregulation.


Biomeditsina ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 10-23
Author(s):  
V. N. Karkischenko ◽  
N. V. Petrova ◽  
E. S. Savchenko ◽  
N. S. Ogneva ◽  
E. M. Koloskova ◽  
...  
Keyword(s):  

Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1014
Author(s):  
Fabio Antenucci ◽  
Armen Ovsepian ◽  
Agnieszka Wrobel ◽  
Hanne Cecilie Winther-Larsen ◽  
Anders Miki Bojesen

Production and isolation of recombinant proteins are costly and work-intensive processes, especially in immunology when tens or hundreds of potential immunogens need to be purified for testing. Here we propose an alternative method for fast screening of immunogen candidates, based on genetic engineering of recombinant bacterial strains able to express and expose selected antigens on their outer membrane. In Actinobacillus pleuropneumoniae, a Gram-negative porcine pathogen responsible for extensive economic losses worldwide, we identified a conserved general secretion pathway (GSP) domain in the N-terminal part of the outer membrane protein ApfA (ApfA stem: ApfAs). ApfAs was used as an outer membrane anchor, to which potential immunogens can be attached. To enable confirmation of correct positioning, ApfAs, was cloned in combination with the modified acyl carrier protein (ACP) fluorescent tag ACP mini (ACPm) and the putative immunogen VacJ. The chimeric construct was inserted in the pMK-express vector, subsequently transformed into A. pleuropneumoniae for expression. Flow cytometry, fluorescence imaging and mass spectrometry analysis were employed to demonstrate that the outer membrane of the transformed strain was enriched with the chimeric ApfAs-ACPm-VacJ antigen. Our results confirmed correct positioning of the chimeric ApfAs-ACPm-VacJ antigen and supported this system’s potential as platform technology enabling antigenic enrichment of the outer membrane of A. pleuropneumoniae.


2020 ◽  
Author(s):  
Khalid Mohamed Adam

Abstract Background The lack of effective treatment and a protective vaccine against the highly infectious SARS-CoV-2 has aggravated the already catastrophic global health issue. Here, in an attempt to design an efficient vaccine, a vigorous immunoinformatics approach was followed to predict the most suitable viral proteins epitopes for building that vaccine. Methods The amino acid sequences of four structural proteins (S, M, N, E) along with one potentially antigenic accessory protein (ORF1a) of SARS-CoV-2 were inspected for the most appropriate epitopes to be used for building the vaccine construct. Several immunoinformatics tools were used to assess the antigenicity, immunogenicity, allergenicity, toxigenicity, interferon-gamma inducing capacity, and the physicochemical properties of the product. Results The final candidate vaccine construct consisted of 468 amino acids, encompassing 30 epitopes. All the vaccine properties and its ability to trigger the humoral and cell-mediated immune response were validated computationally. Molecular modeling, docking to TLR3, simulation, and molecular dynamics were also carried out. Finally, a molecular clone using pET28: :mAID expression plasmid vector was prepared. Conclusion The overall results of the study suggest that the final multi-epitope chimeric construct is a potential candidate for an efficient protective vaccine against SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document