Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees: Carbon gain, hydraulics and nutrient use efficiencies

2020 ◽  
Author(s):  
Jin-Hua Qi ◽  
Ze-Xin Fan ◽  
Pei-Li Fu ◽  
Yong-Jiang Zhang ◽  
Frank Sterck

Abstract Growth rate varies across plant species and represents an important ecological strategy for competition, resource use and fitness. However, empirical studies often show a low predictability of functional traits to tree growth. We measured stem diameter and height growth rates of 96 juvenile trees (2 to 5 m tall) of eight evergreen and eight deciduous broadleaf tree species over three consecutive years in a subtropical forest in southwestern China. We examined the relationships between tree growth rates and 20 leaf/stem traits that associated with carbon gain, stem hydraulics and nutrient use efficiency, as well as the difference between evergreen and deciduous trees. We found that cross-species variations of stem diameter/height growth rate can be predicted by leaf photosynthetic capacity, leaf mass per area, xylem theoretical specific hydraulic conductivity, wood density and photosynthetic nutrient use efficiencies. Higher leaf carbon assimilation and lower leaf/stem constructing costs facilitate deciduous species to be more resource acquisitive and consequently faster growth within a relatively shorter growing season, whereas evergreen species exhibit a more conservative strategies and thus slower growth. Further, stem growth rates of evergreen species showed were more dependence on leaf carbon gains, whereas stem hydraulic efficiency were more important for deciduous tree growth. Our results suggest that physiological traits (photosynthesis, hydraulics, nutrient use efficiency) can predict tree diameter and height growth of subtropical tree species. The differential resource acquisition and use strategies and their associations with tree growth between evergreen and deciduous trees provide insights in explaining the co-existence of evergreen and deciduous tree species in subtropical forests.

2007 ◽  
Vol 71 (3) ◽  
pp. 175-184 ◽  
Author(s):  
Anthony A. Kimaro ◽  
Vic R. Timmer ◽  
Ancelm G. Mugasha ◽  
Shaban A. O. Chamshama ◽  
Deborah A. Kimaro

1985 ◽  
Vol 63 (8) ◽  
pp. 1476-1481 ◽  
Author(s):  
Ralph E. J. Boerner

To determine the relative importance of soil moisture and soil nutrient availability in determining levels of nutrient use efficiency, seasonal nutrient dynamics and growth rates were determined for individuals of Hamamelis virginiana L., an understory tree, in three forest microsites. The mixed oak site had the lowest levels of soil nutrients and moisture, the mixed mesophytic site the highest nutrient availability, and the valley bottom the highest moisture levels. Foliar nitrogen and phosphorus levels declined over the season in all trees, while calcium levels increased with time. Relative growth rates did not differ significantly among sites, though growth varied inversely with tree mass. Proportional nitrogen resorption was highest in trees at the fertile mesophytic site. Phosphorus and calcium use efficiency were higher at the infertile mixed oak site than the others, and phosphorus resorption was highest in trees from the mixed oak site. Projected nitrogen uptake needs for the next growing season were least at the mixed mesophytic site, while projected phosphorus uptake needs were least at the mixed oak site. Within the ranges of moisture and soil pH – nutrient availability present, growth and nitrogen dynamics seemed most closely correlated to soil moisture, and phosphorus dynamics to phosphorus availability. This differential dependence among elements on moisture levels is suggested to be the underlying reason for differences in the form of the relationship between proportional resorption and soil availability of N and P for a variety of woody species.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document