scholarly journals Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species

2015 ◽  
Vol 35 (8) ◽  
pp. 879-893 ◽  
Author(s):  
Jerzy Modrzyński ◽  
Daniel J. Chmura ◽  
Mark G. Tjoelker
2015 ◽  
Vol 31 (3) ◽  
pp. 231-242 ◽  
Author(s):  
Ryota Aoyagi ◽  
Kanehiro Kitayama

Abstract:In this study, we tested the hypothesis that functional traits associated with nutrient impoverishment contribute to enhancing shade-tolerance (survival at low light) for the juveniles of canopy tree species in Bornean rain forests. To test the hypothesis, survival and functional traits (biomass allocation, leaf dynamics and foliar nutrient concentration) were investigated as a function of light conditions for saplings of 13 species in three forests with different levels of nutrient availability. As predicted by the hypothesis, the species in the severely nutrient-poor site (a tropical heath forest on nutrient-poor soils) showed greater shade-tolerance (>91% survival for 8 mo at 5% global site factor) than in the other two sites (mixed dipterocarp forests) (54–87% survival). Across the species, greater shade-tolerance was associated with a higher biomass allocation to roots, a slower leaf production and a higher foliar C concentration, which are considered as C-conservation traits under nutrient impoverishment. These results suggest that the juveniles of the canopy species occurring on nutrient-poor soils can enhance shade-tolerance by the same mechanisms as the adaptation to nutrient impoverishments. Tree species in nutrient-poor environments may be selected for surviving also in shaded conditions.


2018 ◽  
Vol 107 (3) ◽  
pp. 1051-1066 ◽  
Author(s):  
Kyle W. Tomlinson ◽  
Frank J. Sterck ◽  
Eduardo R. M. Barbosa ◽  
Steven de Bie ◽  
Herbert H. T. Prins ◽  
...  

2021 ◽  
Author(s):  
Shanshan Yang ◽  
Frank J. Sterck ◽  
Ute Sass-Klaassen ◽  
J. Hans C. Cornelissen ◽  
Richard S.P. van Logtestijn ◽  
...  

Abstract A central paradigm in comparative ecology is that species sort out along a global economic strategy spectrum, ranging from slow to fast growth. Many studies evaluated plant strategy spectra for leaf traits, b u t few studies evaluated stem strategy spectra using a comprehensive set of anatomical, chemical and morphological traits, addressing key stem functions of different stem compartments (inner wood, outer wood and bark). This study evaluates how stem traits vary in the wood and bark of temperate tree species, and whether a slow-fast growth strategy spectrum exists and what traits make up this plant strategy spectrum. For 14 temperate gymnosperm and angiosperm species, 20 traits belonging to six key stem functions were measured for three stem compartments. Both across and within gymnosperms and angiosperms, a slow-fast stem strategy spectrum is found. Gymnosperms have slow traits and showed converging stem strategies because of their uniform tracheids. Angiosperms have fast traits and showed diverging stem strategies because of a wider array of tissues (vessels, parenchyma and fibers) and vessel size and arrangements (ring-porous versus diffuse porous). Gymnosperms showed a main trade-off between hydraulic efficiency and safety, and angiosperms showed a main trade-off between ‘slow’ diffuse porous species and ‘fast’ ring porous species. The slow traits of gymnosperms allow for a high hydraulic safety, an evergreen leaf habit and steady but slow growth makes them successful in unproductive habitats whereas the fast traits of angiosperms allow for high conductivity, a deciduous leaf habit and fast growth which makes them successful in productive habitats.


Interação ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 61-84
Author(s):  
Gildomar Alves dos Santos ◽  
David Francis Robert Philip Burslem ◽  
Milton Serpa de Meira Jr ◽  
Stanislau Parreira Cardozo

Experimental restoration using tree seedlings is a common strategy for accelerating succession on degraded post-agricultural land formerly occupied by Cerrado vegetation. Seedling growth in degraded tropical lands is constrained by various factors. The goal of this study was to evaluate the seedling growth and survival of seven native tree species used to accelerate forest recovery in a gully area with stressful environmental conditions. The experimental design involved fenced and unfenced blocks, presence and absence of fertilization and use of an adhesive to prevent ant herbivory (four treatments with four replicates). Seedlings were planted in December 2006 and collection of data on seedling basal diameter, height, mortality and herbivory started on January 24th 2007 and continued every three months, until final data collection on January 31st 2009 (9 measurement dates). Overall seedling survival was 38 % and protecting seedlings did not influence growth, but seedlings grew faster in response to the addition of fertilizer containing N, P and K. The use of the adhesive Tanglefoot to exclude leaf cutter ants had no influence on growth. Fencing reduced seedling mortality, but combining fencing with Tanglefoot did not. Nutrient availability limits seedling growth and survival in the gully. Direct planting of seedlings of native trees may accelerate succession in degraded Cerrado lands subject to interventions that overcome constraints on seedling growth and survival.


Sign in / Sign up

Export Citation Format

Share Document