scholarly journals Stem trait spectra underpin multiple functions of temperate gymnosperm and angiosperm tree species

Author(s):  
Shanshan Yang ◽  
Frank J. Sterck ◽  
Ute Sass-Klaassen ◽  
J. Hans C. Cornelissen ◽  
Richard S.P. van Logtestijn ◽  
...  

Abstract A central paradigm in comparative ecology is that species sort out along a global economic strategy spectrum, ranging from slow to fast growth. Many studies evaluated plant strategy spectra for leaf traits, b u t few studies evaluated stem strategy spectra using a comprehensive set of anatomical, chemical and morphological traits, addressing key stem functions of different stem compartments (inner wood, outer wood and bark). This study evaluates how stem traits vary in the wood and bark of temperate tree species, and whether a slow-fast growth strategy spectrum exists and what traits make up this plant strategy spectrum. For 14 temperate gymnosperm and angiosperm species, 20 traits belonging to six key stem functions were measured for three stem compartments. Both across and within gymnosperms and angiosperms, a slow-fast stem strategy spectrum is found. Gymnosperms have slow traits and showed converging stem strategies because of their uniform tracheids. Angiosperms have fast traits and showed diverging stem strategies because of a wider array of tissues (vessels, parenchyma and fibers) and vessel size and arrangements (ring-porous versus diffuse porous). Gymnosperms showed a main trade-off between hydraulic efficiency and safety, and angiosperms showed a main trade-off between ‘slow’ diffuse porous species and ‘fast’ ring porous species. The slow traits of gymnosperms allow for a high hydraulic safety, an evergreen leaf habit and steady but slow growth makes them successful in unproductive habitats whereas the fast traits of angiosperms allow for high conductivity, a deciduous leaf habit and fast growth which makes them successful in productive habitats.

2006 ◽  
Vol 167 (5) ◽  
pp. 758-765 ◽  
Author(s):  
F. J. Sterck ◽  
L. Poorter ◽  
F. Schieving

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1852
Author(s):  
Xueyan Ma ◽  
Guangsheng Zhou ◽  
Gen Li ◽  
Qiuling Wang

The leaf is one of the most drought-sensitive plant organs. Investigating how leaf traits change and their trade-off growth during a drought would contribute to developing targeted drought-resistance measures. We investigated changes in five key maize leaf traits (leaf area, dry mass, effective number, water content, and specific weight) and their trade-off growth based on a drought simulation experiment. We also developed an indicator (0, 1) to quantitatively evaluate drought severity. The results showed a trade-off growth between different leaf traits of maize plants under drought conditions. Maize maintained relatively high leaf water content to maintain high leaf metabolic activity until drought severity was greater than 0. When drought severity was (0, 0.48), maize tended to adopt rapid growth strategy by maintaining regular leafing intensity and investing more energy into leaf area rather than specific leaf weight so that more energy could be absorbed. When the drought severity exceeded 0.48, maize conserved its resources for survival by maintaining relatively lower metabolic activity and thicker leaves to minimize water loss. The results provide an insight into the acclimation strategies of maize under drought, and contribute to targeted drought prevention and relief measures to reduce drought-induced risks to food security.


2021 ◽  
Author(s):  
Ke-Yan Zhang ◽  
Da Yang ◽  
Yun-Bing Zhang ◽  
David S Ellsworth ◽  
Kun Xu ◽  
...  

Abstract The scandent shrub plant form is a variant of liana that has upright and self-supporting stems when young but later becomes a climber. We aimed to explore the associations of stem and leaf traits among sympatric lianas, scandent shrubs and trees, and the effects of growth form and leaf habit on variation in stem or leaf traits. We measured 16 functional traits related to stem xylem anatomy, leaf morphology and nutrient stoichiometry in eight liana, eight scandent shrub and 21 tree species co-occurring in a subalpine cold temperate forest at an elevation of 2,600–3,200 m in Southwest China. Overall, lianas, scandent shrubs and trees were ordered along a fast-slow continuum of stem and leaf functional traits, with some traits overlapping. We found a consistent pattern of lianas > scandent shrubs > trees for hydraulically weighted vessel diameter, maximum vessel diameter and theoretical hydraulic conductivity. Vessel density and sapwood density showed a pattern of lianas = scandent shrubs < trees, and lianas < scandent shrubs = trees, respectively. Lianas had significantly higher specific leaf area and lower carbon concentration than co-occurring trees, with scandent shrubs showing intermediate values that overlapped with lianas and trees. The differentiation among lianas, scandent shrubs and trees was mainly explained by variation in stem traits. Additionally, deciduous lianas were positioned at the fast end of the trait spectrum, and evergreen trees at the slow end of the spectrum. Our results showed for the first time clear differentiation in stem and leaf traits among sympatric liana, scandent shrub and tree species in a subalpine cold temperate forest. This work will contribute to understanding the mechanisms responsible for variation in ecological strategies of different growth forms of woody plants.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5843-5858
Author(s):  
Seray Özden Keleş

The sapling stage is an important phase due to maintaining plant growth, stability, and survival over the life cycle of trees. However, there are limited investigations in the literature related to both growth and stability of different tree species. This study thus investigated how different tree species at the sapling stage showed different anatomical, morphological, and flexural traits despite being of similar age and growing under the same environmental conditions. The variation of sapling properties was determined in two deciduous tree species: common oak (Quercus robur L.) and Oriental beech (Fagus orientalis Lipsky). The results of anatomical and morphological measurements showed that the highest average values of ray length, ray width, pith radius, pith%, bark%, and node numbers were obtained in oak saplings, whereas average ring width, number of rays, and wood% were found to be higher in beech saplings. Oak also exhibited better functional stability in its saplings. The flexural properties were almost 60% greater in oak stems than beech stems. The variations in flexural properties were explained by the morphological and anatomical traits since stability was positively correlated with pith radius, pith%, and bark% and negatively correlated with the number of rays and wood%.


2010 ◽  
Vol 67 (6) ◽  
pp. 624-632 ◽  
Author(s):  
Keila Rego Mendes ◽  
Ricardo Antonio Marenco

Global climate models predict changes on the length of the dry season in the Amazon which may affect tree physiology. The aims of this work were to determine the effect of the rainfall regime and fraction of sky visible (FSV) at the forest understory on leaf traits and gas exchange of ten rainforest tree species in the Central Amazon, Brazil. We also examined the relationship between specific leaf area (SLA), leaf thickness (LT), and leaf nitrogen content on photosynthetic parameters. Data were collected in January (rainy season) and August (dry season) of 2008. A diurnal pattern was observed for light saturated photosynthesis (Amax) and stomatal conductance (g s), and irrespective of species, Amax was lower in the dry season. However, no effect of the rainfall regime was observed on g s nor on the photosynthetic capacity (Apot, measured at saturating [CO2]). Apot and leaf thickness increased with FSV, the converse was true for the FSV-SLA relationship. Also, a positive relationship was observed between Apot per unit leaf area and leaf nitrogen content, and between Apot per unit mass and SLA. Although the rainfall regime only slightly affects soil moisture, photosynthetic traits seem to be responsive to rainfall-related environmental factors, which eventually lead to an effect on Amax. Finally, we report that little variation in FSV seems to affect leaf physiology (Apot) and leaf anatomy (leaf thickness).


2016 ◽  
Author(s):  
Matheus Henrique Nunes ◽  
Matthew P. Davey ◽  
David Anthony Coomes

Abstract. Understanding the causes of variation in plant functional traits is a central issue in ecology, particularly in the context of global change. Analyses of the drivers of traits variation based on thousands of tree species are starting to unravel patterns of variation at the global scale, but these studies tend to focus on interspecific variation, and the contribution of intraspecific changes remains less well understood. Hyperspectroscopy is a recently developed technology for estimating the traits of fresh leaves. Few studies have evaluated its potential for assessing inter- and intra-specific trait variability in community ecology. Working with 24 leaf traits for European tree species on contrasting soil types, found growing on deep alluvial soils and nearby shallow chalk soils, we ask: (i) What contribution do soil type and species identity make to trait variation? (ii) When traits are clustered into three functional groups (light capture and growth, leaf structure and defence, as well as rock-derived nutrients), are some groups more affected by soil than others? (iii) What traits can be estimated precisely using field spectroscopy? (iv) Can leaf spectra be used to detect inter-soil as well as inter-specific variation in traits? The contribution of species and soil-type effects to variation in traits were evaluated using statistical analyses. Foliar traits were predicted from spectral reflectance using partial least square regression, and so inter- and intra-specific variation. Most leaf traits varied greatly among species. The effects of soil type were generally weak by comparison. Macronutrient concentrations were greater on alluvial than chalk soils while micronutrient concentration showed the opposite trend. However, structural traits, as well as most pigments and phenolic concentrations varied little with soil type. Field spectroscopy provided accurate estimates of species-level trait values, but was less effective at detecting subtle variation of rock-derived nutrients between soil types. Field spectroscopy was a powerful technique for estimating cross-species variation in foliar traits and Si predictions using spectroscopy appear to be promising. However, it was unable to detect subtle within-species variation of traits associated with soil type.


2016 ◽  
Vol 858 ◽  
pp. 29-32 ◽  
Author(s):  
Norihiro Hoshino ◽  
Isaho Kamata ◽  
Yuichiro Tokuda ◽  
Emi Makino ◽  
Naohiro Sugiyama ◽  
...  

Limitations in the very fast growth of 4H-SiC crystals are surveyed for a high-temperature gas source method. The evolution of macro-step bunching and void formation in crystal growth is investigated by changing the partial pressures of the source gases and crystal rotation speeds. The variation in macro-step formation depending on radial positions, where step-flow or spiral growth governs, of a grown crystal is also revealed. Based on the relation between growth conditions and macro-step bunching, a trade-off between growth rate enhancement and crystal quality and a method to improve such trade-off are discussed. Nitrogen at a high concentration under very high growth rates in the high-temperature gas source method is also investigated.


Sign in / Sign up

Export Citation Format

Share Document