scholarly journals The Tomato brown rugose fruit virus movement protein overcomes Tm-22 resistance in tomato while attenuating viral transport

Author(s):  
Hagit Hak ◽  
Ziv Spiegelman

Tomato brown rugose fruit virus (ToBRFV) is a new virus of the Tobamovirus genus, causing substantial damage to tomato crops. Reports of recent ToBRFV outbreaks from around the world indicate an emerging global epidemic. ToBRFV overcomes all tobamovirus resistances in tomato, including the durable Tm-22 resistance gene, which had been effective against multiple tobamoviruses. Here, we show that the ToBRFV movement protein (MPToBRFV) enables the virus to evade Tm-22 resistance. Transient expression of MPToBRFV failed to activate the Tm-22 resistance response. Replacement of the original MP sequence of Tomato mosaic virus (ToMV) with MPToBRFV enabled this recombinant virus to infect Tm-22 resistant plants. Using hybrid protein analysis, we show that the elements required to evade Tm-22 are located between MPToBRFV amino acids 1 and 216, and not the C terminus as previously assumed. Analysis of ToBRFV systemic infection in tomato revealed that ToBRFV spreads slower compared to ToMV. Interestingly, replacement of Tobacco mosaic virus (TMV) and ToMV MPs with MPToBRFV caused an attenuation of systemic infection of both viruses. Cell-to-cell movement analysis showed that MPToBRFV moves less effectively compared to the TMV MP (MPTMV). These findings suggest that overcoming Tm-22 is associated with attenuated MP function. This may explain the high durability of Tm-22 resistance, which had remained unbroken for over 60 years.

2020 ◽  
Author(s):  
Hagit Hak ◽  
Ziv Spiegelman

Tomato brown rugose fruit virus (ToBRFV) is a new virus of the Tobamovirus genus, causing substantial damage to tomato crops in the Middle East. Reports of recent ToBRFV outbreaks from around the world indicate an emerging global epidemic. ToBRFV overcomes all tobamovirus resistances in tomato, including the durable Tm-22 resistance gene. Here, we show that the ToBRFV movement protein (MPToBRFV) is the cause for overcoming Tm-22 resistance. Transient expression of MPToBRFV failed to activate the Tm-22 resistance response. Replacement of the original MP sequences of Tomato mosaic virus (ToMV) with MPToBRFV enabled this recombinant virus to overcome Tm-22 resistance. Hybrid protein analysis revealed that the resistance-breaking elements are located between MPToBRFV amino acids 1 and 216, and not the C terminus as previously assumed. Interestingly, replacement of Tobacco mosaic virus (TMV) and ToMV MPs with MPToBRFV caused an attenuation of systemic infection of both viruses. Cell-to-cell movement analysis revealed that MPToBRFV moves less effectively compared to the TMV MP (MPTMV). These findings suggest that overcoming Tm-22 is associated with attenuated MP function. This viral fitness cost may explain the high durability of Tm-22 resistance, which had remained unbroken for over 60 years.


1998 ◽  
Vol 11 (6) ◽  
pp. 498-503 ◽  
Author(s):  
Hans Weber ◽  
Artur J. P. Pfitzner

The Tm-22 resistance gene is used in most commercial tomato cultivars for protection against infection with tomato mosaic virus (ToMV). It has been suggested that Tm-22 resistance interferes with viral cell-to-cell movement in plants; ToMV strain ToMV-22 requires two amino acid (aa) exchanges in the carboxy-terminal region of the viral 30-kDa movement protein (at positions 238 and 244) to overcome Tm-22 resistance. For further analysis of this region of the 30-kDa protein, two stop codons were introduced into ToMV movement proteins at aa positions 235 and 237, leading to deletion of the terminal 30 aa. The mutant virus strains were able to infect wild-type tomato plants systemically, suggesting the carboxy-terminal portion of the ToMV 30-kDa protein is dispensable for virus transport in tomato. Even more important, the deletion mutants overcame the Tm-22 resistance gene. These data indicate the carboxy-terminal domain of the ToMV movement protein serves as a recognition target in the context of the Tm-22 resistance gene. Furthermore, expression of the 30-kDa movement protein from wild-type ToMV, but not from ToMV-22, in transgenic tomato plants with the Tm-22 resistance gene led to elicitation of a necrotic reaction in tomato seedlings, showing that the 30-kDa protein on its own is able to induce the plant's defense reaction.


2004 ◽  
Vol 85 (6) ◽  
pp. 1751-1761 ◽  
Author(s):  
Atsushi Takeda ◽  
Masanori Kaido ◽  
Tetsuro Okuno ◽  
Kazuyuki Mise

The 3a movement protein (MP) plays a central role in the movement of Brome mosaic virus (BMV). To identify the functional regions in BMV MP, 24 alanine-scanning (AS) MP mutants of BMV were constructed. Infectivity of the AS mutants in the host plant Chenopodium quinoa showed that the central region of BMV MP is important for viral movement and both termini of BMV MP have effects on the development of systemic symptoms. A green-fluorescent-protein-expressing RNA3-based BMV vector containing a 2A sequence from Foot-and-mouth disease virus was also constructed. Using this vector, two AS mutants that showed more efficient cell-to-cell movement than wild-type BMV were identified. The MPs of these two AS mutants, which have mutations at their C termini, mediated cell-to-cell movement independently of coat protein (CP), unlike wild-type BMV MP. Furthermore, a BMV mutant with a truncation in the C-terminal 42 amino acids of MP was also able to move from cell to cell without CP, but did not move systemically, even in the presence of CP. These results and an encapsidation analysis suggest that the C terminus of BMV MP is involved in the requirement for CP in cell-to-cell movement and plays a role in long-distance movement. Furthermore, the ability to spread locally and form virions is not sufficient for the long-distance movement of BMV. The roles of MP and CP in BMV movement are discussed.


2001 ◽  
Vol 14 (2) ◽  
pp. 126-134 ◽  
Author(s):  
Atsushi Tamai ◽  
Tetsuo Meshi

Cell-to-cell movement of a plant virus requires expression of the movement protein (MP). It has not been fully elucidated, however, how the MP functions in primary infected cells. With the use of a microprojectile bombardment-mediated DNA infection system for Tomato mosaic virus (ToMV), we found that the cotransfected ToMV MP gene exerts its effects in the initially infected cells and in their surrounding cells to achieve multicellular spread of movement-defective ToMV. Five other tobamoviral MPs examined also transcomplemented the movement-defective phenotype of ToMV, but the Cucumber mosaic virus 3a MP did not. Together with the cell-to-cell movement of the mutant virus, a fusion between the MP and an enhanced green fluorescent protein variant (EGFP) expressed in trans was distributed multicellularly and localized primarily in plasmodesmata between infected cells. In contrast, in noninfected sites the MP-EGFP fusion accumulated predominantly inside the bombarded cells as irregularly shaped aggregates, and only a minute amount of the fusion was found in plasmodesmata. Thus, the behavior of ToMV MP is greatly modulated in the presence of a replicating virus and it is highly likely that the MP spreads in the infection sites, coordinating with the cell-to-cell movement of the viral genome.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhi-Yong Yan ◽  
Xiao-Jie Xu ◽  
Le Fang ◽  
Chao Geng ◽  
Yan-Ping Tian ◽  
...  

AbstractCoat protein (CP) is required for potyviruses to move and establish a systemic infection in plants. π-stackings formed by aromatic residues play critical roles in maintaining protein stability and functions. As we know, many aromatic residues located in the core region of potyvirus CPs are conserved. However, their roles in potyvirus infection remain largely unknown. Here, through analysis of the three-dimensional model of the tobacco vein banding mosaic virus (TVBMV; genus Potyvirus) CP, 16 aromatic residues were predicated to form π-stackings. The results of transient expression experiments demonstrated that deletion of any of these 16 aromatic residues reduced CP accumulation. Infectivity assays showed that deletion of any of these aromatic residues in the TVBMV infectious clone abolished cell-to-cell movement and reduced replication of the virus. Substitution of Y105 and Y147 individually with non-aromatic residues alanine or glycine reduced CP accumulation, virus replication, and abolished the ability of TVBMV to move intercellularly, while substitution of these two residues individually with aromatic residues phenylalanine or tryptophan, had no or little effect on CP accumulation and TVBMV systemic movement and replication. Similar results were obtained from the CP mutants of watermelon mosaic virus (WMV, genus Potyvirus). Taken together, our results demonstrate that multiple aromatic residues in CP are involved in potyvirus movement by forming π-stackings to maintain CP accumulation.


2003 ◽  
Vol 84 (2) ◽  
pp. 497-505 ◽  
Author(s):  
Yasuhiko Matsushita ◽  
Mayumi Ohshima ◽  
Kuniaki Yoshioka ◽  
Masamichi Nishiguchi ◽  
Hiroshi Nyunoya

Virology ◽  
1995 ◽  
Vol 214 (2) ◽  
pp. 464-474 ◽  
Author(s):  
WALTER DE JONG ◽  
ANTONY CHU ◽  
PAUL AHLQUIST

1999 ◽  
Vol 354 (1383) ◽  
pp. 637-643 ◽  
Author(s):  
Vitaly Citovsky

Cell–to–cell movement of tobacco mosaic virus (TMV) is used to illustrate macromolecular traffic through plant intercellular connections, the plasmodesmata. This transport process is mediated by a specialized viral movement protein, P30. In the initially infected cell, P30 is produced by transcription of a subgenomic RNA derived from the invading virus. Presumably, P30 then associates with a certain proportion of the viral RNA molecules, sequestering them from replication and mediating their transport into neighbouring uninfected host cells. This nucleoprotein complex is targeted to plasmodesmata, possibly via interaction with the host cell cytoskeleton. Prior to passage through a plasmodesma, the plasmodesmal channel is dilated by the movement protein. It is proposed that targeting of P30–TMV RNA complexes to plasmodesmata involves binding to a specific cell wall–associated receptor molecule. In addition, a cell wall–associated protein kinase, phosphorylates P30 at its carboxy–terminus and minimizes P30–induced interference with plasmodesmatal permeability during viral infection.


Virology ◽  
2011 ◽  
Vol 413 (2) ◽  
pp. 205-215 ◽  
Author(s):  
Masanori Kaido ◽  
Naoko Funatsu ◽  
Yasuko Tsuno ◽  
Kazuyuki Mise ◽  
Tetsuro Okuno

Sign in / Sign up

Export Citation Format

Share Document