scholarly journals The Dual Effect of the Brassinosteroid Pathway on Rice Black-Streaked Dwarf Virus Infection by Modulating the Peroxidase-Mediated Oxidative Burst and Plant Defense

2019 ◽  
Vol 32 (6) ◽  
pp. 685-696 ◽  
Author(s):  
Hehong Zhang ◽  
Yuqing He ◽  
Xiaoxiang Tan ◽  
Kaili Xie ◽  
Lulu Li ◽  
...  

The phytohormone brassinosteroid (BR) not only plays key roles in regulating plant growth and development but is also involved in modulating the plant defense system in response to pathogens. We previously found that BR application made rice plants more susceptible to the devastating pathogen rice black-streaked dwarf virus (RBSDV), but the mechanism of BR-mediated susceptibility remains unclear. We now show that both BR-deficient and -insensitive mutants are resistant to RBSDV infection. High-throughput sequencing showed that the defense hormone salicylic acid and jasmonic acid pathways were activated in the RBSDV-infected BR mutant. Meanwhile, a number of class III peroxidases (OsPrx) were significantly changed and basal reactive oxygen species (ROS) accumulated in BR mutants. Treatment with exogenous hormones and other chemicals demonstrated that the BR pathway could suppress the levels of OsPrx and the ROS burst by directly binding the promoters of OsPrx genes. Together, our findings indicate that BR-mediated susceptibility is at least partly caused by inhibition of the action of defense hormones, preventing the accumulation of the peroxidase-mediated oxidative burst.

2003 ◽  
Vol 16 (11) ◽  
pp. 1030-1038 ◽  
Author(s):  
E. Delannoy ◽  
A. Jalloul ◽  
K. Assigbetsé ◽  
P. Marmey ◽  
J. P. Geiger ◽  
...  

Cotton cotyledons displayed a hypersensitive reaction (HR) in the cultivar Réba B50 after infiltration with the aviru-lent race 18 from Xanthomonas campestris pv. malvacearum. Two sets of peroxidases were associated with the HR time course. Early but transient accumulation of peroxidase in material encapsulating the bacteria in intercellular areas was observed by immunocytochemistry at 3 h postinfection and coincided with the oxidative burst. Total guaiacol-peroxidase activity was highly increased in cells undergoing HR, from 12 h after treatment. Molecular characterization of seven cloned peroxidase genes revealed highly conserved B, D, and F domains, with similarities to plant class III peroxidases. Analysis of gene expression showed variation in transcript accumulation during both compatible (race 20) and incompatible interactions for four of these genes: pod2, pod3, pod4, and pod6.Pod4 and pod6 were more intensely up-regulated during resistance than during disease and in the control, while pod3 was specifically down-regulated during the HR after the oxidative burst. Pod2 was induced by pathogen infection and weakly stimulated in the control. These data suggest that cotton peroxidases may have various functions in the defense response to Xanthomonas infections.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kewei Cai ◽  
Huixin Liu ◽  
Song Chen ◽  
Yi Liu ◽  
Xiyang Zhao ◽  
...  

Abstract Background Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. At present, POD genes have been studied in Arabidopsis, rice, poplar, maize and Chinese pear, but there are no reports on the identification and function of POD gene family in Betula pendula. Results We identified 90 nonredundant POD genes in Betula pendula. (designated BpPODs). According to phylogenetic relationships, these POD genes were classified into 12 groups. The BpPODs are distributed in different numbers on the 14 chromosomes, and some BpPODs were located sequentially in tandem on chromosomes. In addition, we analyzed the conserved domains of BpPOD proteins and found that they contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results showed that some BpPODs might play an important role in xylem, leaf, root and flower. Furthermore, under low temperature conditions, some BpPODs showed different expression patterns at different times. Conclusions The research on the structure and function of the POD genes in Betula pendula plays a very important role in understanding the growth and development process and the molecular mechanism of stress resistance. These results lay the theoretical foundation for the genetic improvement of Betula pendula.


2004 ◽  
Vol 279 (37) ◽  
pp. 39000-39009 ◽  
Author(s):  
Roberta Pierattelli ◽  
Lucia Banci ◽  
Nigel A. J. Eady ◽  
Jacques Bodiguel ◽  
Jamie N. Jones ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 2876 ◽  
Author(s):  
Sabine Lüthje ◽  
Teresa Martinez-Cortes

Class III peroxidases are heme-containing proteins of the secretory pathway with a high redundance and versatile functions. Many soluble peroxidases have been characterized in great detail, whereas only a few studies exist on membrane-bound isoenzymes. Membrane localization of class III peroxidases has been demonstrated for tonoplast, plasma membrane and detergent resistant membrane fractions of different plant species. In silico analysis revealed transmembrane domains for about half of the class III peroxidases that are encoded by the maize (Zea mays) genome. Similar results have been found for other species like thale-cress (Arabidopsis thaliana), barrel medic (Medicago truncatula) and rice (Oryza sativa). Besides this, soluble peroxidases interact with tonoplast and plasma membranes by protein–protein interaction. The topology, spatiotemporal organization, molecular and biological functions of membrane-bound class III peroxidases are discussed. Besides a function in membrane protection and/or membrane repair, additional functions have been supported by experimental data and phylogenetics.


Author(s):  
Sabine Lüthje ◽  
Claudia-Nicole Meisrimler ◽  
David Hopff ◽  
Tim Schütze ◽  
Jenny Köppe ◽  
...  

2005 ◽  
Vol 39 (5) ◽  
pp. 785-791 ◽  
Author(s):  
N. I. Lukhovitskaya ◽  
A. G. Solovyev ◽  
T. E. Koshkina ◽  
S. K. Zavriev ◽  
S. Yu. Morozov

2020 ◽  
pp. 189-229
Author(s):  
Mohd Aamir ◽  
Krishna Kumar Rai ◽  
Andleeb Zehra ◽  
Manish Kumar Dubey ◽  
Swarnmala Samal ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Raffael Azevedo de Carvalho Oliveira ◽  
Abraão Silveira de Andrade ◽  
Danilo Oliveira Imparato ◽  
Juliana Gabriela Silva de Lima ◽  
Ricardo Victor Machado de Almeida ◽  
...  

Abstract Reactive oxygen species (ROS) are byproducts of aerobic metabolism and may cause oxidative damage to biomolecules. Plants have a complex redox system, involving enzymatic and non-enzymatic compounds. The evolutionary origin of enzymatic antioxidant defense in plants is yet unclear. Here, we describe the redox gene network for A. thaliana and investigate the evolutionary origin of this network. We gathered from public repositories 246 A. thaliana genes directly involved with ROS metabolism and proposed an A. thaliana redox gene network. Using orthology information of 238 Eukaryotes from STRINGdb, we inferred the evolutionary root of each gene to reconstruct the evolutionary history of A. thaliana antioxidant gene network. We found two interconnected clusters: one formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase; and the other formed entirely by class III peroxidases. Each cluster emerged in different periods of evolution: the cluster formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase emerged before opisthokonta-plant divergence; the cluster composed by class III peroxidases emerged after opisthokonta-plant divergence and therefore contained the most recent network components. According to our results, class III peroxidases are in expansion throughout plant evolution, with new orthologs emerging in each evaluated plant clade divergence.


2011 ◽  
Vol 72 (10) ◽  
pp. 1124-1135 ◽  
Author(s):  
Sabine Lüthje ◽  
Claudia-Nicole Meisrimler ◽  
David Hopff ◽  
Benjamin Möller

Sign in / Sign up

Export Citation Format

Share Document