scholarly journals Identification of a Tomatinase in the Tomato-Pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382

2005 ◽  
Vol 18 (10) ◽  
pp. 1090-1098 ◽  
Author(s):  
Olaf Kaup ◽  
Ines Gräfen ◽  
Eva-Maria Zellermann ◽  
Rudolf Eichenlaub ◽  
Karl-Heinz Gartemann

The insertion site of a transposon mutant of Clavibacter michiganensis subsp. michiganensis NCPPB382 was cloned and found to be located in the gene tomA encoding a member of the glycosyl hydrolase family 10. The intact gene was obtained from a cosmid library of C. michiganensis subsp. michiganensis. The deduced protein TomA (543 amino acids, 58 kDa) contains a predicted signal peptide and two domains, the N-terminal catalytic domain and a C-terminal fibronectin III-like domain. The closest well-characterized relatives of TomA were tomatinases from fungi involved in the detoxification of the tomato saponin α-tomatine which acts as a growth inhibitor. Growth inhibition of C. michiganensis subsp. michiganensis by α-tomatine was stronger in the tomA mutants than in the wild type. Tomatinase activity assayed by deglycosylation of α-tomatine to tomatidine was demonstrated in concentrated culture supernatants of C. michiganensis subsp. michiganensis. No activity was found with the tomA mutants. However, neither the transposon mutant nor a second mutant constructed by gene disruption was affected in virulence on the tomato cv. Moneymaker.

2000 ◽  
Vol 13 (7) ◽  
pp. 703-714 ◽  
Author(s):  
Holger Jahr ◽  
Jens Dreier ◽  
Dietmar Meletzus ◽  
Rainer Bahro ◽  
Rudolf Eichenlaub

The phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382, which causes bacterial wilt and canker of tomato, harbors two plasmids, pCM1 (27.35 kb) and pCM2 (72 kb), encoding genes involved in virulence (D. Meletzus, A. Bermpohl, J. Dreier, and R. Eichenlaub, 1993, J. Bacteriol. 175:2131–2136; J. Dreier, D. Meletzus, and R. Eichenlaub, 1997, Mol. Plant-Microbe Interact. 10:195–206). The region of pCM1 carrying the endoglucanase gene celA was mapped by deletion analysis and complementation. RNA hybridization identified a 2.4-knt (kilonucleotide) transcript of the celA structural gene and the transcriptional initiation site was mapped. The celA gene encodes CelA, a protein of 78 kDa (746 amino acids) with similarity to endo-β-1,4-glucanases of family A1 cellulases. CelA has a three-domain structure with a catalytic domain, a type IIa-like cellulose-binding domain, and a C-terminal domain. We present evidence that CelA plays a major role in pathogenicity, since wilt induction capability is obtained by endoglucanase expression in plasmid-free, nonvirulent strains and by complementation of the CelA- gene-replacement mutant CMM-H4 with the wild-type celA gene.


1997 ◽  
Vol 323 (2) ◽  
pp. 547-555 ◽  
Author(s):  
Vincent A. McKIE ◽  
Gary W. BLACK ◽  
Sarah J. MILLWARD-SADLER ◽  
Geoffrey P. HAZLEWOOD ◽  
Judith I. LAURIE ◽  
...  

Pseudomonas fluorescens subsp. cellulosa expressed arabinanase activity when grown on media supplemented with arabinan or arabinose. Arabinanase activity was not induced by the inclusion of other plant structural polysaccharides, and was repressed by the addition of glucose. The majority of the Pseudomonas arabinanase activity was extracellular. Screening of a genomic library of P. fluorescens subsp. cellulosa DNA constructed in Lambda ZAPII, for recombinants that hydrolysed Red-dyed arabinan, identified five arabinan-degrading plaques. Each of the phage contained the same Pseudomonas arabinanase gene, designated arbA, which was present as a single copy in the Pseudomonas genome. The nucleotide sequence of arbA revealed an open reading frame of 1041 bp encoding a protein, designated arabinanase A (ArbA), of Mr 39438. The N-terminal sequence of ArbA exhibited features typical of a prokaryotic signal peptide. Analysis of the primary structure of ArbA indicated that, unlike most Pseudomonas plant cell wall hydrolases, it did not contain linker sequences or have a modular structure, but consisted of a single catalytic domain. Sequence comparison between the Pseudomonas arabinanase and proteins in the SWISS-PROT database showed that ArbA exhibits greatest sequence identity with arabinanase A from Aspergillus niger, placing the enzyme in glycosyl hydrolase Family 43. The significance of the differing substrate specificities of enzymes in Family 43 is discussed. ArbA purifed from a recombinant strain of Escherichia coli had an Mr of 34000 and an N-terminal sequence identical to residues 32–51 of the deduced sequence of ArbA, and hydrolysed linear arabinan, carboxymethylarabinan and arabino-oligosaccharides. The enzyme displayed no activity against other plant structural polysaccharides, including branched sugar beet arabinan. ArbA produced almost exclusively arabinotriose from linear arabinan and appeared to hydrolyse arabino-oligosaccharides by successively releasing arabinotriose. ArbA and the Aspergillus arabinanase mediated a decrease in the viscosity of linear arabinan that was associated with a significant release of reducing sugar. We propose that ArbA is an arabinanase that exhibits both an endo- and an exo- mode of action.


Author(s):  

Abstract A new distribution map is provided for Clavibacter michiganensis subsp. sepedonicus (Spieckermann & Kotthoff) Dye & Kemp. Actinobacteria: Actinomycetales: Microbacteriaceae. Hosts: potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Information is given on the geographical distribution in Europe (Austria, Belarus, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, Germany, Greece, Crete, Hungary, Latvia, Lithuania, Netherlands, Norway, Poland, Romania, Russia, Central Russia, Northern Russia, Siberia, Slovakia, Spain, Sweden, UK and Ukraine), Asia (China, Anhui, Gansu, Hebei, Heilongjiang, Henan, Jiangsu, Ningxia, Shaanxi, Yunnan, Zhejiang, Japan, Kazakhstan, Korea Democratic People's Republic, Korea Republic, Nepal, Pakistan, Taiwan, Turkey and Uzbekistan), North America (Canada, Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland, Nova Scotia, Ontario, Prince Edward Island, Quebec, Saskatchewan, Mexico, USA, Idaho, Kansas, North Dakota and Oregon) and South America (Bolivia).


2017 ◽  
Vol 149 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Eliana Wassermann ◽  
Marcela Susana Montecchia ◽  
Olga Susana Correa ◽  
Vega Damián ◽  
Ana María Romero

2008 ◽  
Vol 69 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Czesław Ślusarski

Attempts at Biological Control ofClavibacter michiganensissubsp.michiganensisOn Rockwool-Grown Greenhouse TomatoesTwo greenhouse experiments were conducted in which tomato plants artificially inoculated withClavibacter michiganensissubsp.michiganensis(Cmm) were grown in an open rockwool system as spring and autumn crops. Two isolates of the rhizosphere bacteria,Pseudomonas fluorescensstrain PSR21,Pseudomonas reactansstrain GGS14, a commercial biocontrol agent Aqua Bac Plus (Bacillusspp.) and a proprietary disinfectant containing QAC+Chx, applied at weekly intervals, were evaluated for their efficiency in the suppression of the bacterial canker of tomato. All treatments tested revealed to be ineffective in controlling the disease. The introduction ofCmmbacteria into the fresh rockwool in the first year of its usage resulted in a 100% death of tomato plants, whereas following an artificial inoculation of two- and three-year-old rockwool slabs withCmmbacteria dead plants amounted to 70 and 58%, respectively. This indicates that in the re-used rockwool a natural microbial suppressiveness to bacterial canker of tomato might be developed in the root zone.


1997 ◽  
Vol 322 (2) ◽  
pp. 469-475 ◽  
Author(s):  
Hyuntae KIM ◽  
Myron K. JACOBSON ◽  
Véronique ROLLI ◽  
Josiane MÉNISSIER-de MURCIA ◽  
Joseph REINBOLT ◽  
...  

Photoaffinity labelling of the human poly(ADP-ribose) polymerase (PARP) catalytic domain (40 kDa) with the NAD+ photoaffinity analogue 2-azido-[α-32P]NAD+ has been used to identify NAD+-binding residues. In the presence of UV, photoinsertion of the analogue was observed with a stoichiometry of 0.73 mol of 2-azido-[α-32P]NAD+ per mol of catalytic domain. Competition experiments indicated that 3-aminobenzamide strongly protected the insertion site. Residues binding the adenine ring of NAD+ were identified by trypsin digestion and boronate affinity chromatography in combination with reverse-phase HPLC. Two major NAD+-binding residues, Trp1014 of peptide Thr1011–Trp1014 and Lys893 of peptide Ile879 –Lys893, were identified. The site-directed mutagenesis of these two residues revealed that Lys893, but not Trp1014, is critical for activity. The close positioning of Lys893 near the adenine ring of NAD+ has been confirmed by the recently solved crystallographic structure of the chicken PARP catalytic domain [Ruf, Ménissier-de Murcia, de Murcia and Schulz (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 7481–7485].


Agrikultura ◽  
2016 ◽  
Vol 27 (2) ◽  
Author(s):  
Luciana Djaya ◽  
Ineu Sulastrini ◽  
Iin Rusita

ABSTRACT Inoculation Techniques of Clavibacter michiganensis subsp. sepedonicus, the Cause of Bacterial Ring Rot Disease, on Potato (Solanum tuberosum L.). Clavibacter michiganensis subsp. sepedonicus, the cause of bacterial ring rot disease on potatoes, has been detected in potato fields in Pangalengan. To anticipate the spread of the pathogen, researches on the desease epidemiology are urgent to be carried out. Artificial inoculation techniques will be useful in the epidemiological studies. The objective of this reasearch was to evaluate some inoculation techniques, which are simple, cheap and fast in causing disease symptoms. The experiment was carried out at the laboratory and glasshouse of Balai Penelitian Tanaman Sayuran (Balitsa), Lembang. The experiment was arranged in the randomized block design with five treatments of inoculation technique and five replications. The treatments were (a) soaking wounded seed tubers in pathogen suspension, (b) soaking not wounded seed tubers in pathogen suspension, (c) pathogen suspension was injected into leaf axil, (d) pathogen suspension was injected into seed tubers, and (e) pathogen suspension was poured into the planting holes. The results showed that stabbing and soaking tubers in pathogen suspension caused the shortest incubation period (17 days after inoculation) and the highest disease incidence (60%). Keywords : Clavibacter michiganensis subsp. sepedonicus, Bacterial ring rot, Potatoes, Inoculation techniquesABSTRAKClavibacter michiganensis subsp. sepedonicus (Cms), penyebab penyakit busuk cincin bakteri pada tanaman kentang, telah terdeteksi keberadaannya pada pertanaman kentang di Pangalengan. Dalam upaya mencegah penyebaran penyakit busuk cincin bakteri di Indonesia, perlu adanya studi epidemiologi patogen tersebut. Pada penelitian epidemiologi akan diperlukan cara menginokulasi tanaman secara buatan. Tujuan dari penelitian ini adalah untuk mendapatkan teknik inokulasi buatan yang dapat menyebabkan periode inkubasi yang lebih singkat dan persentase kejadian penyakit busuk cincin bakteri paling tinggi pada tanaman kentang. Percobaan dilaksanakan di rumah kaca dan laboratorium penyakit Balai Penelitian Tanaman Sayuran (Balitsa), Lembang. Percobaan dirancang secara rancangan acak kelompok dengan lima perlakuan teknik inokulasi Cms dan lima ulangan, yaitu inokulasi dengan (a) merendam ubi benih yang telah dilukai dalam suspensi bakteri, (b) merendam ubi benih tanpa dilukai dalam suspensi bakteri, (c) suspensi bakteri ditusukkan pada ketiak daun tanaman kentang, (d) suspensi bakteri ditusukkan pada ubi benih, dan (e) suspensi bakteri disiramkan pada lubang tanam. Masing-masing ulangan terdiri dari lima tanaman. Hasil penelitian menunjukkan bahwa dari lima teknik inokulasi buatan yang dilakukan, inokulasi dengan melukai ubi benih dan merendamnya dalam suspensi patogen menghasilkanJurnal Agrikultura 2016, 27 (2): 66-71ISSN 0853-2885Teknik Inokulasi Buatan Clavibacter….67periode inkubasi tersingkat, yaitu 17 hari setelah inokulasi, dan persentase kejadian penyakit tertinggi yaitu sebesar 60%.Kata Kunci : Clavibacter michiganensis subsp. sepedonicus, Busuk cincin bakteri, Kentang, Inokulasi buatan


Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 649-649 ◽  
Author(s):  
R. Ftayeh ◽  
A. von Tiedemann ◽  
B. Koopmann ◽  
K. Rudolph ◽  
M. Abu-Ghorrah

Between March and mid April of 2007, several extensive surveys for Clavibacter michiganensis subsp. michiganensis were carried out among greenhouses in the coastal strip provinces of the Mediterranean Sea in north-west Syria (Latakia and Tartous), where a large proportion of Syrian fresh-market tomatoes are produced. This bacterium causes bacterial canker of tomato and is considered an A2 quarantine pathogen by the European Plant Protection Organization (EPPO). It is currently present in all major tomato-production areas in the EPPO region (4), but has not been previously reported in Syria. The survey revealed typical canker symptoms in 7% of 150 inspected greenhouses that contained cvs. Dima, Huda, and Astona. These symptoms included stunting, dark brown-to-black lesions on the leaf margins, wilting and defoliation of whole plants, and vascular discoloration. The disease incidence in such greenhouses was estimated at 15% at the time of the survey. Diseased plants were surface sterilized and homogenized in sterile water. Serial dilutions were plated on nutrient glucose agar. Suspected colonies were further purified by repeated restreaking on new agar plates. All 10 of the suspected strains obtained from different locations were identified as C. michiganensis subsp. michiganensis on the basis of the following observations: bacterial cells of all strains had a coryneform shape, were nonmotile, gram positive according to Gram's reaction test with 3% KOH (2), oxidase-negative, and caused hypersensitive reactions on leaves of Mirabilis jalaba (1) within 24 h. PCR assays were conducted with the C. michiganensis subsp. michiganensis-specific primer set PSA-4/R (3) and template DNA prepared from in-vitro-grown bacteria with the MasterPure Gram Positive DNA Purification Kit (Epicentre Biotechnologies, Madison, WI). The expected 270-bp amplicon was observed for both reference strains as well as the Syrian strains. Pathogenicity of the strains was confirmed by artificial inoculation of 6-week-old tomato plants (Lycopersicon esculentum Mill. cv. Lyconorma). Inoculation was performed by stabbing the stem with a sterile needle through a drop (~35 μl) of bacterial suspension (~108 CFU/ml in 0.01 M MgSO4) placed in the axil of the second or third true leaf. Three tomato seedlings were inoculated with each strain. Control plants were inoculated with sterile 0.01 M MgSO4. Symptoms including lateral wilt of leaflets, stem lesions, and wilting of whole plants were observed within 10 to 15 days after inoculation, except for the negative control. To fulfill Koch's postulates, reisolation and reidentification of the pathogen was conducted as previously described. To our knowledge, this is the first record of the occurrence of bacterial canker of tomato in Syria. References: (1) R. D. Gitaitis. Plant Dis. 74:58, 1990. (2) T. J. Gregersen. Appl. Microbiol. Biotechnol. 5:123, 1978. (3) K. H. Pastrik and F. A. Rainey. J. Phytopathol. 147:687, 1999. (4) I. M. Smith and L. M. F. Charles, eds. Map 253 in: Distribution Maps of Quarantine Pests for Europe. EPPO/CABI, 1998.


Sign in / Sign up

Export Citation Format

Share Document