scholarly journals The Early Nodulin Gene ENOD2 Shows Different Expression Patterns During Sesbania rostrata Stem Nodule Development

1998 ◽  
Vol 11 (3) ◽  
pp. 237-241 ◽  
Author(s):  
Sofie Goormachtig ◽  
Marc Van Montagu ◽  
Marcelle Holsters

During nodule development on stems of Sesbania rostrata, the ENOD2 gene was expressed in the nodule parenchyma and in outer cortical cells. The latter; novel expression pattern was low in uninfected nodulation sites, strongly enhanced 1 day after infection, and correlated with young peridermal cells at later stages. The induction of both ENOD2 transcript accumulation patterns was dependent on Nod factor-producing bacteria.

1997 ◽  
Vol 10 (3) ◽  
pp. 316-325 ◽  
Author(s):  
Sofie Goormachtig ◽  
Marcio Alves-Ferreira ◽  
Marc Van Montagu ◽  
Gilbert Engler ◽  
Marcelle Holsters

Upon infection of Sesbania rostrata with Azorhizobium caulinodans, nodules are formed on roots and stems. Stem nodules develop from abundantly distributed dormant root primordia. To acquire more insight into the meristem organization during stem nodule development, the expression patterns of a mitotic B1-type cyclin gene (Sesro; CycB1;1), a cyclin-dependent kinase gene (Cdc2-1Sr), and a histone H4 gene (H4-1Sr) of S. rostrata were followed by in situ hybridization. Cdc2-1Sr transcripts were found in all cells of uninfected and infected root primordia. In uninfected root primordia, Sesro;CycB1;1 transcripts were detected in a few cells of the apical root meristem whereas H4-1Sr transcripts were abundant in this region. Interestingly, after inoculation with A. caulinodans, H4-1Sr transcripts disappeared in the root meristem and a patchy pattern of Sesro;CycB1;1 and H4-1Sr expression appeared in the cortex of the root primordium, reflecting the formation of globular nodule primordia. When bacterial invasion started, a distal nodule meristem was delimited wherein Sesro;CycB1;1 and H4-1Sr expression was concentrated. Approximately 1 week after inoculation, meristem activity ceased, indicated by the loss of Sesro;CycB1;1 and H4-1Sr expression.


2007 ◽  
Vol 35 (6) ◽  
pp. 1638-1642 ◽  
Author(s):  
P. Laporte ◽  
F. Merchan ◽  
B.B. Amor ◽  
S. Wirth ◽  
M. Crespi

npcRNA (non-protein-coding RNAs) are an emerging class of regulators, so-called riboregulators, and include a large diversity of small RNAs [miRNAs (microRNAs)/siRNAs (small interfering RNAs)] that are involved in various developmental processes in plants and animals. In addition, several other npcRNAs encompassing various transcript sizes (up to several kilobases) have been identified using different genomic approaches. Much less is known about the mechanism of action of these other classes of riboregulators also present in the cell. The organogenesis of nitrogen-fixing nodules in legume plants is initiated in specific root cortical cells that express the npcRNA MtENOD40 (Medicago truncatula early nodulin 40). We have identified a novel RBP (RNA-binding protein), MtRBP1 (M. truncatula RBP 1), which interacts with the MtENOD40 RNA, and is exported into the cytoplasm during legume nodule development in the region expressing MtENOD40. A direct involvement of the MtENOD40 RNA in the relocalization of this RBP into cytoplasmic granules could be demonstrated, revealing a new RNA function in the cell. To extend these results, we searched for npcRNAs in the model plant Arabidopsis thaliana whose genome is completely known. We have identified 86 novel npcRNAs from which 27 corresponded to antisense RNAs of known coding regions. Using a dedicated ‘macroarray’ containing these npcRNAs and a collection of RBPs, we characterized their regulation in different tissues and plants subjected to environmental stresses. Most of the npcRNAs showed high variations in gene expression in contrast with the RBP genes. Recent large-scale analysis of the sRNA component of the transcriptome revealed an enormous diversity of siRNAs/miRNAs in the Arabidopsis genome. Bioinformatic analysis revealed that 34 large npcRNAs are precursors of siRNAs/miRNAs. npcRNAs, which are a sensitive component of the transcriptome, may reveal novel riboregulatory mechanisms involved in post-transcriptional control of differentiation or environmental responses.


2001 ◽  
Vol 28 (9) ◽  
pp. 951
Author(s):  
Sang Ho Lee ◽  
Ho Bang Kim ◽  
Chung Sun An

This paper originates from an address at the 8th International Symposium on Nitrogen Fixation with Non-Legumes, Sydney, NSW, December 2000 Two cDNA clones encoding S-adenosyl-L-methionine synthetase (SAMS) were isolated from the root nodule cDNA library of Elaeagnus umbellata Thunberg and analysed on the basis of deduced amino acid sequence and expression pattern. Two EuSAMS clones shared 75–84% identity at the nucleotide level, and 85–95% identity at the amino acid level, with the other plant SAMS genes. Genomic Southern hybridization revealed the presence of more than two copies of SAMS genes in the genome of E. umbellata. Reverse transcriptase-mediated polymerase chain reaction (RT–PCR) analysis showed EuSAMS1 transcripts were more abundant than those of EuSAMS2. Similar to the expression pattern of other plant SAMS genes, both genes were expressed at higher levels in root than in leaf. During nodule development, expression of both genes was increased, with the highest level at 6–8 week after inoculation, and decreased rapidly thereafter. In situ hybridization analysis also showed both SAMS transcripts in the meristem zone, the infected cells of the fixation zone and in the central vascular system of root nodules. However, EuSAMS2 transcripts were strongly detected in the prefixation zone, whereas EuSAMS1 transcripts were hardly detected. These results suggest different regulatory mechanisms for the two genes in the root nodule. The expression pattern of SAMS genes in the root nodule may correlate mostly with cell wall synthesis, polyamine biosynthesis and other methylation-mediated functions.


2000 ◽  
Vol 13 (1) ◽  
pp. 14-22 ◽  
Author(s):  
Nektarios Kavroulakis ◽  
Emanouil Flemetakis ◽  
Georgios Aivalakis ◽  
Panagiotis Katinakis

A full-length cDNA clone encoding carbonic anhydrase (CA) was isolated from a soybean nodule cDNA library. In situ hybridization and immunolocalization were performed in order to assess the location of CA transcripts and protein in developing soybean nodules. CA transcripts and protein were present at high levels in all cell types of young nodules, whereas in mature nodules they were absent from the central tissue and were concentrated in cortical cells. The results suggested that, in the earlier stages of nodule development, CA might facilitate the recycling of CO2 while at later stages it may facilitate the diffusion of CO2 out of the nodule system. In parallel, sucrose metabolism was investigated by examination of the temporal and spatial transcript accumulation of sucrose synthase (SS) and phosphoenolpyruvate carboxylase (PEPC) genes, with in situ hybridization. In young nodules, high levels of SS gene transcripts were found in the central tissue as well as in the parenchymateous cells and the vascular bundles, while in mature nodules the levels of SS gene transcripts were much lower, with the majority of the transcripts located in the parenchyma and the pericycle cells of the vascular bundles. High levels of expression of PEPC gene transcripts were found in mature nodules, in almost all cell types, while in young nodules lower levels of transcripts were detected, with the majority of them located in parenchymateous cells as well as in the vascular bundles. These data suggest that breakdown of sucrose may take place in different sites during nodule development.


1995 ◽  
Vol 350 (1331) ◽  
pp. 101-107 ◽  

Rhizobium is able to induce the formation of a new organ on roots of leguminous plants, the root nodule, in which the penetrated bacteria fix atmospheric nitrogen. This process is initiated by specific lipo-oligosaccharides, called Nod factors, secreted by the bacterium. Nodule formation proceeds through distinct steps like infection thread formation and activation of mitotic activity in cortical cells. During these steps specific plant genes, nodulin genes, are induced and several of these have been identified and characterized. Nodulin genes are used now as markers to study Nod factor perception and signal transduction.


2002 ◽  
Vol 15 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Sam Lievens ◽  
Sofie Goormachtig ◽  
Sylvia Herman ◽  
Marcelle Holsters

Differential display was applied to the early stages of the interaction between the tropical legume Sesbania rostrata and its microsymbiont Azorhizobium caulinodans ORS571. An upregulated clone that is similar to pectin methylesterase-encoding genes was isolated (Srpme1). The full-length sequence of Srpme1 was used to localize PME transcripts in situ during S. rostrata stem-nodule development. Several expression patterns were distinguished, hinting at general roles in vascular tissue development and cell division or expansion and at symbiosis-specific functions, such as uninfected cell differentiation.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 456C-456
Author(s):  
Harry T. Horner ◽  
David J. Hannapel ◽  
William R. Graves ◽  
Carol M. Foster ◽  
David J. Hannapel ◽  
...  

Early nodulin genes, such as ENOD2, play a role in the first stages of nodulation. Although ENOD2 is conserved among nodulating legumes studied to date, its occurrence and activity have not been studied among woody legumes such as Maackia amurensis Rupr. & Maxim. Our objective was to localize MaENOD2 transcripts during nodule development and describe the anatomy of nodules formed on the roots of M. amurensis in relation to ENOD2 mRNA accumulation. Nodules (<1 mm, 1-2 mm, >2 mm in diameter, and mature) were prepared for light microscopy, sectioned, and stained with safranin and fast green for structural contrast or with the periodic acid Schiff's reaction for starch. The location of ENOD2 transcripts was determined by using in situ hybridization with DIG-labeled sense and antisense RNAs transcribed from a 602-bp fragment of the coding region of MaENOD2. Mature nodules from M. amurensis possessed peripheral tissues, a distal meristem, and a central infected region characteristic of indeterminant development. In situ hybridization showed that MaENOD2 transcripts accumulated in the distribution layer and uninfected cells of the central symbiotic region. Amyloplasts that contained starch grains were identified in these tissues and in the inner parenchyma of the nodule. Throughout nodule development, transcripts were restricted to areas with high levels of stored starch that surrounded cells actively fixing N2. Our results suggest that ENOD2 in M. amurensis may be a cell wall component of tissues that regulate nutrient flow to and from sinks, such as symbiotic regions of a nodule. These data may lead to a better understanding of the role of the ENOD2 gene family during nodulation.


Author(s):  
Sofie Goormachtig ◽  
Marcio Alves Ferreira ◽  
Sam Lievens ◽  
Viviana Corich ◽  
Peter Mergaert ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Krista L. Plett ◽  
Sean L. Bithell ◽  
Adrian Dando ◽  
Jonathan M. Plett

Abstract Background The ability of chickpea to obtain sufficient nitrogen via its symbiotic relationship with Mesorhizobium ciceri is of critical importance in supporting growth and grain production. A number of factors can affect this symbiotic relationship including abiotic conditions, plant genotype, and disruptions to host signalling/perception networks. In order to support improved nodule formation in chickpea, we investigated how plant genotype and soil nutrient availability affect chickpea nodule formation and nitrogen fixation. Further, using transcriptomic profiling, we sought to identify gene expression patterns that characterize highly nodulated genotypes. Results A study involving six chickpea varieties demonstrated large genotype by soil nitrogen interaction effects on nodulation and further identified agronomic traits of genotypes (such as shoot weight) associated with high nodulation. We broadened our scope to consider 29 varieties and breeding lines to examine the relationship between soilborne disease resistance and the number of nodules developed and real-time nitrogen fixation. Results of this larger study supported the earlier genotype specific findings, however, disease resistance did not explain differences in nodulation across genotypes. Transcriptional profiling of six chickpea genotypes indicates that genes associated with signalling, N transport and cellular localization, as opposed to genes associated with the classical nodulation pathway, are more likely to predict whether a given genotype will exhibit high levels of nodule formation. Conclusions This research identified a number of key abiotic and genetic factors affecting chickpea nodule development and nitrogen fixation. These findings indicate that an improved understanding of genotype-specific factors affecting chickpea nodule induction and function are key research areas necessary to improving the benefits of rhizobial symbiosis in chickpea.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 721-731 ◽  
Author(s):  
Teresa D Shippy ◽  
Jianhua Guo ◽  
Susan J Brown ◽  
Richard W Beeman ◽  
Robin E Denell

Abstract The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.


Sign in / Sign up

Export Citation Format

Share Document