scholarly journals Overexpression of Pti5 in Tomato Potentiates Pathogen-Induced Defense Gene Expression and Enhances Disease Resistance to Pseudomonas syringae pv. tomato

2001 ◽  
Vol 14 (12) ◽  
pp. 1453-1457 ◽  
Author(s):  
Ping He ◽  
Randall F. Warren ◽  
Tiehan Zhao ◽  
Libo Shan ◽  
Lihuang Zhu ◽  
...  

The tomato Pti5 gene encodes a pathogen-inducible ethylene response element-binding protein-like transcription factor that interacts with the disease resistance gene product Pto. Overexpression of Pti5 or Pti5-VP16, a translational fusion with a constitutive transcriptional activation domain, in tomato enhanced resistance to Pseudomonas syringae pv. tomato. Constitutive expression of Pti5 or Pti5-VP16 did not affect the basal level of pathogenesis-related gene expression, but it accelerated pathogen-induced expression of GluB and Catalase. The results demonstrate a positive role of Pti5 in defense gene regulation and disease resistance and suggest that a pathogen-activated posttran-scriptional regulatory step is necessary for the pathogen induction of the defense gene expression.

2020 ◽  
Vol 117 (48) ◽  
pp. 30805-30815
Author(s):  
Mingzhe Shen ◽  
Chae Jin Lim ◽  
Junghoon Park ◽  
Jeong Eun Kim ◽  
Dongwon Baek ◽  
...  

Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.


2008 ◽  
Vol 134 (3) ◽  
pp. 440-452 ◽  
Author(s):  
Yifei Cao ◽  
Yayun Yang ◽  
Huijuan Zhang ◽  
Dayong Li ◽  
Zhong Zheng ◽  
...  

2008 ◽  
Vol 98 (11) ◽  
pp. 1226-1232 ◽  
Author(s):  
M. A. B. Herman ◽  
J. K. Davidson ◽  
C. D. Smart

Plant activators provide an appealing management option for bacterial diseases of greenhouse-grown tomatoes. Two types of plant activators, one that induces systemic acquired resistance (SAR) and a second that activates induced systemic resistance (ISR), were evaluated for control of Pseudomonas syringae pv. tomato and effect on plant defense gene activation. Benzothiadiazole (BTH, SAR-inducing compound) effectively reduced bacterial speck incidence and severity, both alone and in combination with the ISR-inducing product. Application of BTH also led to elevated activation of salicylic acid and ethylene-mediated responses, based on real-time polymerase chain reaction analysis of marker gene expression levels. In contrast, the ISR-inducing product (made up of plant growth-promoting rhizobacteria) inconsistently modified defense gene expression and did not provide disease control to the same level as did BTH. No antagonism was observed by combining the two activators as control of bacterial speck was similar to or better than BTH alone.


FEBS Letters ◽  
2012 ◽  
Vol 586 (19) ◽  
pp. 3293-3298 ◽  
Author(s):  
T. Adam ◽  
K. Bouhidel ◽  
C. Der ◽  
F. Robert ◽  
A. Najid ◽  
...  

2004 ◽  
Vol 39 (6) ◽  
pp. 920-932 ◽  
Author(s):  
Fasong Zhou ◽  
Frank L.H. Menke ◽  
Keiko Yoshioka ◽  
Wolfgang Moder ◽  
Yumiko Shirano ◽  
...  

2004 ◽  
Vol 16 (12) ◽  
pp. 3460-3479 ◽  
Author(s):  
Jonathan P. Anderson ◽  
Ellet Badruzsaufari ◽  
Peer M. Schenk ◽  
John M. Manners ◽  
Olivia J. Desmond ◽  
...  

Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 401-412 ◽  
Author(s):  
Randall F Warren ◽  
Peter M Merritt ◽  
Eric Holub ◽  
Roger W Innes

Abstract The RPS5 disease resistance gene of Arabidopsis mediates recognition of Pseudomonas syringae strains that possess the avirulence gene avrPphB. By screening for loss of RPS5-specified resistance, we identified five pbs (avrPphB susceptible) mutants that represent three different genes. Mutations in PBS1 completely blocked RPS5-mediated resistance, but had little to no effect on resistance specified by other disease resistance genes, suggesting that PBS1 facilitates recognition of the avrPphB protein. The pbs2 mutation dramatically reduced resistance mediated by the RPS5 and RPM1 resistance genes, but had no detectable effect on resistance mediated by RPS4 and had an intermediate effect on RPS2-mediated resistance. The pbs2 mutation also had varying effects on resistance mediated by seven different RPP (recognition of Peronospora parasitica) genes. These data indicate that the PBS2 protein functions in a pathway that is important only to a subset of disease-resistance genes. The pbs3 mutation partially suppressed all four P. syringae-resistance genes (RPS5, RPM1, RPS2, and RPS4), and it had weak-to-intermediate effects on the RPP genes. In addition, the pbs3 mutant allowed higher bacterial growth in response to a virulent strain of P. syringae, indicating that the PBS3 gene product functions in a pathway involved in restricting the spread of both virulent and avirulent pathogens. The pbs mutations are recessive and have been mapped to chromosomes I (pbs2) and V (pbs1 and pbs3).


Sign in / Sign up

Export Citation Format

Share Document