transcriptional corepressor
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 20)

H-INDEX

43
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Motohiro Sekiya ◽  
Kenta Kainoh ◽  
Takehito Sugasawa ◽  
Ryunosuke Yoshino ◽  
Takatsugu Hirokawa ◽  
...  

AbstractBiological systems to sense and respond to metabolic perturbations are critical for the maintenance of cellular homeostasis. Here we describe a hepatic system in this context orchestrated by the transcriptional corepressor C-terminal binding protein 2 (CtBP2) that harbors metabolite-sensing capabilities. The repressor activity of CtBP2 is reciprocally regulated by NADH and acyl-CoAs. CtBP2 represses Forkhead box O1 (FoxO1)-mediated hepatic gluconeogenesis directly as well as Sterol Regulatory Element-Binding Protein 1 (SREBP1)-mediated lipogenesis indirectly. The activity of CtBP2 is markedly defective in obese liver reflecting the metabolic perturbations. Thus, liver-specific CtBP2 deletion promotes hepatic gluconeogenesis and accelerates the progression of steatohepatitis. Conversely, activation of CtBP2 ameliorates diabetes and hepatic steatosis in obesity. The structure-function relationships revealed in this study identify a critical structural domain called Rossmann fold, a metabolite-sensing pocket, that is susceptible to metabolic liabilities and potentially targetable for developing therapeutic approaches.


2021 ◽  
Author(s):  
Josh Saul ◽  
Takashi Hirose ◽  
Robert Horvitz

Cell identity is characterized by a distinct combination of gene expression, cell morphology and cellular function established as progenitor cells divide and differentiate. Following establishment, cell identities can be unstable and require active and continuous maintenance throughout the remaining life of a cell. Mechanisms underlying the maintenance of cell identities are incompletely understood. Here we show that the gene ctbp-1, which encodes the transcriptional corepressor C-terminal binding protein-1 (CTBP-1), is essential for the maintenance of the identities of the two AIA interneurons in the nematode Caenorhabditis elegans. ctbp-1 is not required for the establishment of the AIA cell fate but rather functions cell-autonomously and can act in older worms to maintain proper AIA gene expression, morphology and function. From a screen for suppressors of the ctbp-1 mutant phenotype, we identified the gene egl-13, which encodes a SOX family transcription factor. We found that egl-13 regulates AIA function and aspects of AIA gene expression, but not AIA morphology. We conclude that the CTBP-1 protein maintains AIA cell identity in part by utilizing EGL-13 to repress transcriptional activity in the AIAs. More generally, we propose that transcriptional corepressors like CTBP-1 might be critical factors in the maintenance of cell identities, harnessing the DNA-binding specificity of transcription factors like EGL-13 to selectively regulate gene expression in a cell-specific manner.


Author(s):  
Gabriel Rodríguez-Gómez ◽  
Alejandro Paredes-Villa ◽  
Mayte Guadalupe Cervantes-Badillo ◽  
Jessica Paola Gómez-Sonora ◽  
Jesús H. Jorge-Pérez ◽  
...  

mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Aravind Madhavan ◽  
K. B. Arun ◽  
Akhil Raj Pushparajan ◽  
M. Balaji ◽  
Ramakrishnan Ajay Kumar

Following infection with M. tuberculosis , levels of HDAC1 go up in macrophages, and it is recruited to the promoter of IL-12B where it hypoacetylates histone H3, leading to the downregulation of the gene. Here, we show that host transcriptional repressor protein ZBTB25 and transcriptional corepressor Sin3a associate with HDAC1 in the silencing complex.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ilaria Gori ◽  
Roger George ◽  
Andrew G Purkiss ◽  
Stephanie Strohbuecker ◽  
Rebecca A Randall ◽  
...  

Shprintzen-Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys-Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-β signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional corepressor SKI, which is a negative regulator of TGF-b signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-β responses, in both knockin cells expressing an SGS mutation, and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-b-induced transcriptional responses, and not enhancement, which has important implications for other Marfan-related syndromes.


2020 ◽  
Vol 117 (48) ◽  
pp. 30805-30815
Author(s):  
Mingzhe Shen ◽  
Chae Jin Lim ◽  
Junghoon Park ◽  
Jeong Eun Kim ◽  
Dongwon Baek ◽  
...  

Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242054
Author(s):  
Hideki Tanaka ◽  
Kousaku Murata ◽  
Wataru Hashimoto ◽  
Shigeyuki Kawai

Tup1-Cyc8 (also known as Tup1-Ssn6) is a general transcriptional corepressor. D-Mannitol (mannitol) and D-sorbitol (sorbitol) are the major polyols in nature. Budding yeast Saccharomyces cerevisiae is unable to assimilate mannitol or sorbitol, but acquires the ability to assimilate mannitol due to a spontaneous mutation in TUP1 or CYC8. In this study, we found that spontaneous mutation of TUP1 or CYC8 also permitted assimilation of sorbitol. Some spontaneous nonsense mutations of CYC8 produced a truncated Cyc8 with a C-terminal polyglutamine. The effects were guanidine hydrochloride-sensitive and were dependent on Hsp104, but were complemented by introduction of CYC8, ruling out involvement of a prion. Assimilation of mannitol and sorbitol conferred by other mutations of TUP1 or CYC8 was guanidine hydrochloride-tolerant. It is physiologically reasonable that S. cerevisiae carries this mechanism to acquire the ability to assimilate major polyols in nature.


Author(s):  
Kenichi Yokota ◽  
Hirotaka Shibata ◽  
Isao Kurihara ◽  
Sakiko Kobayashi ◽  
Ayano Murai-Takeda ◽  
...  

2020 ◽  
Author(s):  
Ilaria Gori ◽  
Roger George ◽  
Andrew G. Purkiss ◽  
Stephanie Strohbuecker ◽  
Rebecca A. Randall ◽  
...  

ABSTRACTShprintzen-Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys-Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-β signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional corepressor SKI, which is a negative regulator of TGF-β signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-β responses, in both knockin cells expressing an SGS mutation, and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-β-induced transcriptional responses, and not enhancement, which has important implications for other Marfan-related syndromes.


Sign in / Sign up

Export Citation Format

Share Document