scholarly journals Control of Fusarium Wilt of Watermelon by Grafting onto Bottlegourd or Interspecific Hybrid Squash Despite Colonization of Rootstocks by Fusarium

Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 255-266 ◽  
Author(s):  
A. P. Keinath ◽  
R. L. Hassell

Grafting watermelon (Citrullus lanatus var. lanatus) onto rootstocks of interspecific hybrid squash (Cucurbita moschata × C. maxima), bottle gourd (Lagenaria siceraria), or citron (Citrullus lanatus var. citroides) has been used in Asia and Israel to mange Fusarium wilt of watermelon caused by Fusarium oxysporum f. sp. niveum. The objectives of this study were to determine the frequency of infection of six rootstocks by F. oxysporum f. sp. niveum races 1 and 2 and the field performance of grafted rootstocks in Charleston, SC. Grafted and nongrafted watermelon and rootstock plants were inoculated in the greenhouse with race 1, race 2, or water (the control treatment). With both races, the frequency of recovery of F. oxysporum from scion and rootstock portions of inoculated watermelon plants grafted onto ‘Ojakkyo’ citron was greater than from watermelon plants grafted onto ‘Shintosa Camel’ and ‘Strong Tosa’ interspecific hybrid squash, and from plants grafted onto ‘Emphasis’, ‘Macis’, and ‘WMXP 3945’ bottlegourd. For nongrafted plants inoculated with race 1, percent recovery also was greater from Ojakkyo than from interspecific hybrid squash and bottlegourd. For nongrafted plants inoculated with race 2, F. oxysporum was recovered from the base of ≥79% of all inoculated plants. More than two-thirds (15) of 21 isolates recovered from the tops or scions of inoculated plants were pathogenic on watermelon. In spring 2010 and 2011, the six rootstocks were grafted with seedless watermelon ‘Tri-X 313’, which is susceptible to both races, and transplanted in a field infested with races 1 and 2 of F. oxysporum f. sp. niveum. Disease incidence for nongrafted and self-grafted Tri-X 313 (the control treatments) and Tri-X 313 grafted onto Ojakkyo citron did not differ significantly. Grafted watermelon plants produced greater weights and numbers of fruit than plants of the two control treatments. Nonpathogenic isolates of F. oxysporum and isolates of F. oxysporum f. sp. niveum colonized interspecific hybrid squash, bottlegourd, and grafted watermelon. The rootstocks evaluated, however, restricted movement of F. oxysporum f. sp. niveum into the watermelon scion, suppressed wilt symptoms, and increased fruit yields in an infested field.

Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1326-1332 ◽  
Author(s):  
Anthony P. Keinath ◽  
Richard L. Hassell

Fusarium wilt of watermelon, caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. niveum race 2, is a serious, widespread disease present in major watermelon-growing regions of the United States and other countries. ‘Fascination,’ a high yielding triploid resistant to race 1, is grown in southeastern states in fields that contain a mixture of races 1 and 2. There is some benefit to using cultivars with race 1 resistance in such fields, even though Fascination is susceptible to Fusarium wilt caused by race 2. Experiments in 2012 and 2013 were done in fields infested primarily with race 2 and a mixture of races 1 and 2, respectively. Fascination was grafted onto four rootstock cultivars: bottle gourd (Lagenaria siceraria) ‘Macis’ and ‘Emphasis’ and interspecific hybrid squash (Cucurbita maxima× C. moschata) ‘Strong Tosa’ and ‘Carnivor.’ Nongrafted and self-grafted Fascination were used as susceptible control treatments. In both experiments, mean incidence of plants with symptoms of Fusarium wilt was ≥52% in the susceptible control treatments and ≤6% on the grafted rootstocks. Disease incidence did not differ between rootstock species or cultivars. In both years, Fascination grafted onto Strong Tosa and Macis produced more marketable-sized fruit than the susceptible control treatments. Grafted Emphasis and Carnivor also produced more fruit than the control treatments in 2012. The cucurbit rootstocks suppressed Fusarium wilt caused by race 2 and increased marketable yield of triploid watermelon grown in infested soil.


Plant Disease ◽  
2018 ◽  
Vol 102 (9) ◽  
pp. 1820-1827 ◽  
Author(s):  
Anthony P. Keinath ◽  
Paula A. Agudelo

Interspecific hybrid squash (Cucurbita maxima × C. moschata ‘Strong Tosa’) and bottle gourd (Lagenaria siceraria ‘Macis’) rootstocks are resistant to Fusarium oxysporum f. sp. niveum but susceptible to Meloidogyne incognita (Southern root-knot nematode). Coinfection of Early Prolific Straightneck summer squash (C. pepo) with root-knot nematode and F. oxysporum f. sp. niveum has been reported to increase susceptibility to Fusarium wilt. The objectives of this study were to determine whether such an interaction occurred between M. incognita and F. oxysporum f. sp. niveum races 1 and 2 on Strong Tosa, Macis, and watermelon cultivars Fascination (resistant to race 1) and Tri-X 313 (susceptible to both races). Hosts were inoculated in a greenhouse with one of four pathogen treatments: F. oxysporum f. sp. niveum, M. incognita, both pathogens, or neither pathogen. Galling was present on ≥10% of the root systems of 90% of the plants inoculated with M. incognita. Bottle gourd had less galling than interspecific hybrid squash. Plants not inoculated with F. oxysporum f. sp. niveum did not wilt. Four weeks after inoculation, incidence and severity of Fusarium wilt and recovery of F. oxysporum did not differ for any hosts inoculated with F. oxysporum f. sp. niveum alone and F. oxysporum f. sp. niveum plus M. incognita (host–treatment interactions not significant). In general, Early Prolific Straightneck grouped with the F. oxysporum f. sp. niveum-resistant rootstocks when inoculated with F. oxysporum f. sp. niveum race 2 and with the susceptible watermelon when inoculated with race 1, regardless of inoculation with M. incognita. Recovery of F. oxysporum from stems of inoculated watermelon was greater than recovery from the other three hosts, regardless of nematode inoculation. In conclusion, our experiments do not support the hypothesis that resistance to F. oxysporum f. sp. niveum in cucurbit rootstocks or resistant watermelon cultivars would be compromised when M. incognita infects the roots.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1383-1390 ◽  
Author(s):  
Anthony P. Keinath ◽  
W. Patrick Wechter ◽  
William B. Rutter ◽  
Paula A. Agudelo

Interspecific hybrid squash (Cucurbita maxima × Cucurbita moschata) rootstocks used to graft watermelon (Citrullus lanatus var. lanatus) are resistant to Fusarium oxysporum f. sp. niveum, the fungus that causes Fusarium wilt of watermelon, but they are susceptible to Meloidogyne incognita, the southern root knot nematode. A new citron (Citrullus amarus) rootstock cultivar Carolina Strongback is resistant to F. oxysporum f. sp. niveum and M. incognita. The objective of this study was to determine if an interaction between M. incognita and F. oxysporum f. sp. niveum race 2 occurred on grafted or nongrafted triploid watermelon susceptible to F. oxysporum f. sp. niveum race 2. In 2016 and 2018, plants of nongrafted cultivar Fascination and Fascination grafted onto Carolina Strongback and interspecific hybrid squash cultivar Carnivor were inoculated or not inoculated with M. incognita before transplanting into field plots infested or not infested with F. oxysporum f. sp. niveum race 2. Incidence of Fusarium wilt and area under the disease progress curve did not differ when hosts were inoculated with F. oxysporum f. sp. niveum alone or F. oxysporum f. sp. niveum and M. incognita together. Fusarium wilt was greater on nongrafted watermelon (78% mean incidence) than on both grafted rootstocks and lower on Carnivor (1% incidence) than on Carolina Strongback (12% incidence; P ≤ 0.01). Plants not inoculated with F. oxysporum f. sp. niveum did not wilt. At the end of the season, Carnivor had a greater percentage of the root system galled than the other two hosts, whereas galling did not differ on Fascination and Carolina Strongback. F. oxysporum f. sp. niveum reduced marketable weight of nongrafted Fascination with and without coinoculation with M. incognita. M. incognita reduced marketable weight of Fascination grafted onto Carnivor compared with noninoculated, nongrafted Fascination. In conclusion, cucurbit rootstocks that are susceptible and resistant to M. incognita retain resistance to F. oxysporum f. sp. niveum when they are coinfected with M. incognita.


Plant Disease ◽  
2005 ◽  
Vol 89 (1) ◽  
pp. 108-108 ◽  
Author(s):  
D. S. Egel ◽  
R. Harikrishnan ◽  
R. Martyn

Fusarium oxysporum f. sp. niveum race 1 is uniformly distributed throughout watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) growing regions, but F. oxysporum f. sp. niveum race 2 has a limited known distribution in the United States (Texas, Florida, Oklahoma, Maryland, and Delaware) (3,4). Since the spring of 2001, commercial watermelon fields in Knox and Gibson counties in southwestern Indiana have been observed with symptoms of one-sided wilt and vascular discoloration typical of Fusarium wilt. Race 2 of F. oxysporum f. sp. niveum was suspected as the casual agent since the diseased watermelon cultivars are considered resistant to races 0 and 1. Two isolates of F. oxysporum obtained from wilted watermelon plants in two different commercial fields and one isolate obtained from a wilted seedling in a transplant house were compared for pathogenicity in a greenhouse assay. Known isolates of F. oxysporum f. sp. niveum races 0, 1, and 2 were obtained from Don Hopkins (University of Florida, Apopka), Kate Everts (University of Maryland/University of Delaware, Salisbury, MD), and Ray Martyn (Purdue University, West Lafayette, IN), respectively, and were used for comparison. All isolates were grown in shake cultures in a mineral salts liquid medium. (1). After 72 hr, the predominately microconidal suspensions were filtered through cheesecloth and adjusted to 1 × 105 conidia/ml with the aid of a hemacytometer. A concentration of 1 × 105 condia/ml was shown previously to cause the desired disease reaction in the standard cultivars. Seedlings of the differential cvs, Black Diamond (universal susceptible), Charleston Gray (race 0 resistant), and Calhoun Gray (race 0 and 1 resistant) were grown in a 1:1, (v:v) sand/ vermiculite mixture to the first true-leaf stage after which the plants were uprooted and the roots carefully washed prior to root dip inoculation. Subsequent to inoculation, seedlings were planted in a sand/vermiculite/ peat mixture (4:1:1, [v:v:v]) with four seedlings to a 15-cm-diameter pot. The experimental design was a randomized complete block with five replications. Two isolates from the commercial field plants caused an average of 100% wilt on cv. Black Diamond, 95% wilt on cv. Charleston Gray, and 80% wilt on cv. Calhoun Gray, resulting in a designation of race 2. The isolate from a commercial transplant house resulted in 100, 60, and 15% wilt, respectively, on the three standard cultivars resulting in a race 1 designation. The presence of F. oxysporum f. sp. niveum race 2 in Indiana is significant because Indiana currently ranks fifth in the United States in watermelon production and there are no commercially available cultivars that possess resistance to race 2. To our knowledge, this is the first report of F. oxysporum f. sp. niveum race 2 in Indiana and the first report of race 2 from the Midwest region of the United States. Race 2, first described from the United States in 1985 (2), has now been confirmed in six states. References: (1) R. Esposito and A. Fletcher. Arch. Biochem. Biophys. 93:369, 1961. (2) R. Martyn, Plant Dis. 69:1007, 1985. (3) R. Martyn, Plant Dis. 71:233, 1987. (4) X. Zhou and K. Everts. Plant Dis. 87:692, 2003.


Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 3019-3025
Author(s):  
Sean M. Toporek ◽  
Anthony P. Keinath

Pythium species cause root and stem rot in watermelon (Citrullus lanatus), but cucurbit rootstocks used to graft watermelon have not been evaluated for resistance. P. aphanidermatum and P. myriotylum were inoculated onto 15 nongrafted watermelon, citron (Citrullus amarus), bottle gourd (Lagenaria siceraria), and interspecific hybrid squash (Cucurbita maxima × C. moschata) cultivars in a growth chamber. Watermelon was more susceptible than bottle gourd and interspecific hybrid squash at 20 and 30°C. Twenty-one cultivars were inoculated in a field with an equal blend of both Pythium species. Interspecific hybrid squash was less susceptible than bottle gourd and watermelon in 2018 and 2019. Seedless watermelon cultivar Tri-X 313 was grafted to one citron, one bottle gourd, and three interspecific hybrid squash rootstocks. Plants were inoculated in the field as described. Grafting to interspecific hybrid squash rootstocks reduced disease incidence compared with nongrafted controls in 2018 and 2019. Mefenoxam and propamocarb applied at transplanting did not affect disease compared with non-fungicide-treated plots. Grafting to interspecific hybrid squash Camelforce significantly increased total and marketable fruit numbers and total weight in 2019 compared with the nongrafted control. In summary, interspecific hybrid squash was consistently resistant to Pythium, demonstrating resistance and utility in watermelon grafting.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1068f-1068 ◽  
Author(s):  
J.W. Scott ◽  
J.P. Jones

Forty-two Lycopersicon pennellii Corr. D'Arcy accessions, from the Tomato Genetics Stock Center, were inoculated for resistance to Fusarium wilt race 3 at the 3-leaf and cotyledon stage. All were over 90% healthy when inoculated at the 3-leaf stage but had greater disease incidence at the cotyledon stage. Crosses were made between healthy plants within each accession. Using this seed, 39 accessions were 100% healthy and 3 were over 96% healthy when inoculated at either stage. Seventeen F1's with susceptible parents were tested for race 3 and all had over 80% healthy plants. Twenty-two accessions were tested for Fusarium wilt race 1 and race 2. For race 1, 21 were 100% healthy and 1 was 91% healthy, For race 2, 20 were 100% healthy, 1 was 96% healthy, and 1 was 75% healthy. Forty accessions were screened for Fusarium crown rot and Verticillium wilt. For crown rot, LA 1277, LA 1367, and LA 1657 were over 95% healthy, 6 other accessions were over 68% healthy and several others had over 50% healthy plants, All 40 were susceptible to Verticillium wilt race 1. L. pennellii appears to be a good source of resistance to Fusarium sp. but not to Verticillium wilt.


Plant Disease ◽  
2008 ◽  
Vol 92 (6) ◽  
pp. 983-983 ◽  
Author(s):  
B. D. Bruton ◽  
W. W. Fish ◽  
D. B. Langston

Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) is the number one specialty crop grown in Georgia, a state that ranks fourth nationally in watermelon production. In the last 5 years, Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) has been the greatest yield-limiting disease of watermelon in Georgia. In 2004, a seedless-watermelon field of ‘Regency’ and ‘Tri-X 313’ in Berrien County, GA exhibited approximately 40% of wilted plants. Affected plants also exhibited strong discoloration in the crown xylem. Plant samples (cultivars unknown) from a similarly affected field were also tested from Crisp County, GA. Xylem tissue was excised from the main stem of eight diseased plants in the area between the second and third internode, surface sterilized for 1 min in 1% NaOCl, rinsed with 80% ethanol, and plated onto water agar amended with 100 μg/liter of streptomycin sulfate. Fungi with the morphological characteristics of Fusarium oxysporum (4) were consistently recovered from the diseased tissue of all eight plants. The isolates were hyphal tipped and maintained in vials of sterile artificial potting mix until ready for use (1). Isolates were grown on Esposito and Fletcher medium (2) for 10 days, filtered through cheesecloth, and adjusted to 1 × 106 spores/ml. Reference isolates of race 1 and 2 were used as comparisons for race determination of the unknowns. In each of four studies, plants at the two-leaf stage were removed from potting mix, washed gently, and their roots were uniformly trimmed to 2.5 cm. Before repotting, the seedlings were subjected to a 2-min root-dip in the respective spore-containing media. In each study, approximately 40 plants of each watermelon differential were inoculated with the respective isolates. In disease scoring, each plant was considered a rep. ‘Black Diamond’ is susceptible to races 0, 1, and 2; ‘Charleston Gray’ is resistant to race 0; ‘Calhoun Gray’ is resistant to races 0 and 1, and PI-296341-FR (3) is resistant to races 0, 1, and 2 of Fon. Four plants were planted per 15-cm plastic pot, maintained in an air-conditioned headhouse for 24 h, and then placed in the greenhouse in a randomized complete block design. After 30 days, all plants were rated as to healthy, wilted, or dead plants. From eight isolates tested, one isolate from each county was determined to be Fon race 2 on the basis of its ability to wilt/kill a high percentage of the race 1 resistant differential, i.e., ‘Calhoun Gray’. Mean disease percentages for the isolates from each of the two counties on the watermelon differentials were 95 and 100% on ‘Black Diamond’, 68 and 80% on ‘Charleston Gray’, and 70 and 86% on ‘Calhoun Gray.’ Because of apparent genetic drift within our PI-296341-FR population, we determined that these data were not useful for identifying race 2. In fact, we observed a range of 17 to 80% wilt/death in the PI-296341-FR over a total of four studies that included a known race 2 isolate (Calg 13(15); E. Vivoda). To our knowledge, this is the first report of race 2 in Georgia and it increases the number of states to seven in which race 2 has been identified. Five of the top 10 watermelon-producing states have now reported race 2 of Fon for which there is no genetic resistance within commercial cultivars. References: (1) B. D. Bruton et al. Plant Dis. 84:907, 2000. (2) R. Esposito and A. Fletcher. Arch. Biochem. Biophys. 93:369, 1961. (3) R. D. Martyn and D. Netzer. HortScience 26:429, 1991. (4) P. E. Nelson et al. Fusarium Species: An Illustrated Manual for Identification. Pennsylvania State University Press, University Park, 1983.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 984-989 ◽  
Author(s):  
Sandra E. Branham ◽  
Amnon Levi ◽  
W. Patrick Wechter

Fusarium wilt race 1, caused by the soilborne fungus Fusarium oxysporum Schlechtend.: Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon), is a major disease of watermelon (Citrullus lanatus) in the United States and throughout the world. Although Fusarium wilt race 1 resistance has been incorporated into several watermelon cultivars, identification of additional genetic sources of resistance is crucial if a durable and sustainable level of resistance is to be continued over the years. We conducted a genetic mapping study to identify quantitative trait loci (QTLs) associated with resistance to Fon race 1 in segregating populations (F2:3 and recombinant inbred lines) of Citrullus amarus (citron melon) derived from the Fon race 1 resistant and susceptible parents USVL246-FR2 and USVL114, respectively. A major QTL (qFon1-9) associated with resistance to Fon race 1 was identified on chromosome 9 of USVL246-FR2. This discovery provides a novel genetic source of resistance to Fusarium wilt race 1 in watermelon and, thus, an additional host-resistance option for watermelon breeders to further the effort to mitigate this serious phytopathogen.


Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Anthony P. Keinath ◽  
Timothy W. Coolong ◽  
Justin D. Lanier ◽  
Pingsheng Ji

Fusarium wilt of watermelon caused by Fusarium oxysporum f. sp. niveum is a serious, widespread disease of watermelon throughout the southern United States. To investigate whether soil temperature affects disease development, three cultivars of triploid watermelon were transplanted March 17 to 21, April 7 to 11, and April 26 to May 2 in 2015 and 2016 at Charleston, SC, and Tifton, GA into fields naturally infested with F. oxysporum f. sp. niveum. Incidence of Fusarium wilt was lower with late-season than with early and midseason transplanting in all four experiments (P ≤ 0.01). Cultivar Citation had more wilted plants than the cultivars Fascination and Melody in three of four experiments (P ≤ 0.05). In South Carolina, planting date did not affect weight and number of marketable fruit ≥4.5 kg apiece. In Georgia in 2016, weight and number of marketable fruit were greater with late transplanting than with early and midseason transplanting. In both states, yield and value for Fascination and Melody were higher than for Citation. Soil temperature averaged over the 4-week period after transplanting was negatively correlated with disease incidence for all four experiments (r = –0.737, P = 0.006). Transplanting after mid-April and choosing a cultivar with resistance to F. oxysporum f. sp. niveum race 1, like Fascination, or tolerance, like Melody, can help manage Fusarium wilt of watermelon and increase marketable yields in the southern United States.


2018 ◽  
Vol 42 (4) ◽  
pp. 599-607
Author(s):  
L Yasmin ◽  
MA Ali ◽  
FN Khan

The efficacy of fungicides in controlling Fusarium wilt of gladiolus was studied at Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur during 2010-2012 following RCB design with four replications. Six fungicides such as Bavistin (0.1%), Provax (0.2%), Mancozeb (0.2%), Rovral (0.2%), Chlorax (10%) and Cupravit (0.7%) were evaluated against the Fusarium wilt disease of gladiolus (Fusarium oxysporum f. sp. gladioli) under naturally infested field condition. Bavistin was very effective in reducing the disease incidence and thereby resulting maximum corm germination (99.98%), spike length (73.90 cm), rachis length (43.70 cm), florets spike-1 (12.63), flower sticks plot-1 (38.75) and corm plot-1 (60.23) and cormel yield ha-1 (2.51 t) of gladiolus. Provax and Cupravit were also effective in inhibiting the disease incidence as well as better spike length, rachis length, florets spike-1, no of flower sticks, corm and cormel yield.Bangladesh J. Agril. Res. 42(4): 599-607, December 2017


Sign in / Sign up

Export Citation Format

Share Document