scholarly journals First Report of Pseudomonas viridiflava Causing Pith Necrosis of Tomato (Solanum lycopersicum) in Serbia

Plant Disease ◽  
2015 ◽  
Vol 99 (7) ◽  
pp. 1033-1033 ◽  
Author(s):  
T. Popović ◽  
Ž. Ivanović ◽  
M. Ignjatov
Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1223-1223 ◽  
Author(s):  
P. F. Sarris ◽  
E. A. Trantas ◽  
E. Mpalantinaki ◽  
F. N. Ververidis ◽  
S. E. Gouma ◽  
...  

In 2006, a disease was observed on two artichoke (Cynara scolymus L. cv. Lardati) fields in Crete, Greece, covering ~2 ha. Symptoms developed after several days of rainy and windy weather and >70% of capitula were affected, resulting in unmarketable produce. Initial symptoms were water-soaked, dark green spots on bracts with many sunken, necrotic, often elongated lesions, each with a brown-black center and surrounded by a water-soaked halo with a dark red-brown margin. Symptoms were more severe on inner bracts. Isolations from symptomatic, surface-disinfected bracts onto King's B agar medium (KB) consistently yielded yellow bacterial colonies that produced a green-blue fluorescent pigment. Ten selected artichoke isolates, all gram-negative, presented the LOPAT profile (- - + - +) and were levan negative, oxidase negative, potato rot positive, arginine dihydrolase negative, and showed tobacco hypersensitive reaction. All isolates used L-arabinose, D(-)-tartrate, and L-lactate, but not sucrose, L(+)-tartrate, or trigonelline. Results were identical to those obtained with the reference strain of Pseudomonas viridiflava NCPPB 1249 (3), and strains PV3005 and PV3006 from eggplant (1). Based on these biochemical tests, 10 isolates were identified as P. viridiflava group II members of the LOPAT determinative scheme of Lelliott (1,2). Two artichoke isolates (PV608 and PV609) were selected for molecular characterization. The identity and phylogenetic analysis were determined by multilocus sequence typing with the gyrB, rpoD, and rpoB genes (PV608 Accession Nos. JN383375, JN383363, and JQ267546; PV609 Accession Nos. JN383376, JN383364, and JQ267547). BLAST searches showed highest nucleotide sequence identity (96%) with GenBank sequences of P. viridiflava reference strains NCPPB 963 and CFBP 2107. Pathogenicity of 10 artichoke isolates and reference strains was tested twice on detached capitulum bracts of artichoke cv. Lardati, as well as 4-week-old tomato plants of cv. ACE, and Chrysanthemum indicum cv. Reagan plants. Each isolate was inoculated onto 10 bracts by placing 15 μl of bacterial suspension (5 × 106 CFU/ml) of a 48-h culture in KB broth on the surface of the bract, and pricking the bract through the drop of bacterial suspension with a sterile needle. Each isolate was also inoculated onto five tomato and five chrysanthemum plants by dipping a sterile toothpick in the appropriate bacterial culture and pricking the surface of the stem. Ten control plants were inoculated similarly with sterile, distilled water. Inoculated bracts and plants were kept in boxes lined with moist filter paper at 25 to 30°C and 80 to 100% relative humidity. Lesions developed on detached bracts within 72 h and were similar to those observed on the naturally infected plants. On tomato and chrysanthemum plants, pith necrosis and wilting symptoms were induced within 1 week of inoculation. Symptoms were not observed on control bracts and plants. Bacterial colonies were reisolated from bract lesions and stems with pith necrosis, but not from control plants, and the reisolates had the same LOPAT profile as the original isolates of P. viridiflava, thus fulfilling Koch's postulates. To our knowledge, this is the first report in the world of P. viridiflava causing a disease of artichoke bracts. References: (1) D. E. Goumas et al. Eur. J. Plant Pathol. 104:181, 1998. (2) Lelliott et al. J. Appl. Bacteriol. 29:470, 1966. (3) M. L. Saunier et al. Appl. Environ. Microbiol. 62:2360, 1996.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 698-698 ◽  
Author(s):  
Y. Tomitaka ◽  
T. Usugi ◽  
R. Kozuka ◽  
S. Tsuda

In 2009, some commercially grown tomato (Solanum lycopersicum) plants in Chiba Prefecture, Japan, exhibited mosaic symptoms. Ten plants from a total of about 72,000 cultivated plants in the greenhouses showed such symptoms. To identify the causal agent, sap from leaves of the diseased plants was inoculated into Chenopodium quinoa and Nicotiana benthamiana plants. Local necrotic lesions appeared on inoculated leaves of C. quinoa, but no systemic infection was observed. Systemic mosaic symptoms were observed on the N. benthamiana plants inoculated. Single local lesion isolation was performed three times using C. quinoa to obtain a reference isolate for further characterization. N. benthamiana was used for propagation of the isolate. Sap from infected leaves of N. benthamiana was mechanically inoculated into three individual S. lycopersicum cv. Momotaro. Symptoms appearing on inoculated tomatoes were indistinguishable from those of diseased tomato plants found initially in the greenhouse. Flexuous, filamentous particles, ~750 nm long, were observed by electron microscopy in the sap of the tomato plants inoculated with the isolate, indicating that the infecting virus may belong to the family Potyviridae. To determine genomic sequence of the virus, RT-PCR was performed. Total RNA was extracted from the tomato leaves experimentally infected with the isolate using an RNeasy Plant Mini kit (QIAGEN, Hilden, Germany). RT-PCR was performed by using a set of universal, degenerate primers for Potyviruses as previously reported (2). Amplicons (~1,500 bp) generated by RT-PCR were extracted from the gels using the QIAquick Gel Extraction kit (QIAGEN) and cloned into pCR-BluntII TOPO (Invitrogen, San Diego, CA). DNA sequences of three individual clones were determined using a combination of plasmid and virus-specific primers, showing that identity among three clones was 99.8%. A consensus nucleotide sequence of the isolate was deposited in GenBank (AB823816). BLASTn analysis of the nucleotide sequence determined showed 99% identity with a partial sequence in the NIb/coat protein (CP) region of Colombian datura virus (CDV) tobacco isolate (JQ801448). Comparison of the amino acid sequence predicted for the CP with previously reported sequences for CDV (AY621656, AJ237923, EU571230, AM113759, AM113754, and AM113761) showed 97 to 100% identity range. Subsequently, CDV infection in both the original and experimentally inoculated plants was confirmed by RT-PCR using CDV-specific primers (CDVv and CDVvc; [1]), and, hence, the causal agent of the tomato disease observed in greenhouse tomatoes was proved to be CDV. The first case of CDV on tomato was reported in Netherlands (3), indicating that CDV was transmitted by aphids from CDV-infected Brugmansia plants cultivated in the same greenhouse. We carefully investigated whether Brugmansia plants naturally grew around the greenhouses, but we could not find them inside or in proximity to the greenhouses. Therefore, sources of CDV inoculum in Japan are still unclear. This is the first report of a mosaic disease caused by CDV on commercially cultivated S. lycopersicum in Japan. References: (1) D. O. Chellemi et al. Plant Dis. 95:755, 2011. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) J. Th. J. Verhoeven et al. Eur. J. Plant. Pathol. 102:895, 1996.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ahmed Sabra ◽  
Mohammed Ali Al Saleh ◽  
I. M. Alshahwan ◽  
Mahmoud A. Amer

Tomato (Solanum lycopersicum L.) is the most economically important member of family Solanaceae and cultivated worldwide and one of the most important crops in Saudi Arabia. The aim of this study is screening of the most common viruses in Riyadh region and identified the presence of tomato brown rugose fruit virus (ToBRFV) in Saudi Arabia. In January 2021, unusual fruit and leaf symptoms were observed in several greenhouses cultivating tomatoes commercially in Riyadh Region, Saudi Arabia. Fruit symptoms showed irregular brown spots, deformation, and yellowing spots which render the fruits non-marketable, while the leaf symptoms included mottling, mosaic with dark green wrinkled and narrowing. These plants presented the symptoms similar to those described in other studies (Salem et al., 2015, Luria et al., 2017). A total 45 Symptomatic leaf samples were collected and tested serologically against suspected important tomato viruses including: tomato chlorosis virus, tomato spotted wilt virus, tomato yellow leaf curl virus, tomato chlorotic spot virus, tomato aspermy virus, tomato bushy stunt virus, tomato black ring virus, tomato ringspot virus, tomato mosaic virus, pepino mosaic virus and ToBRFV using Enzyme linked immunosorbent assay (ELISA) test (LOEWE®, Biochemica, Germany), according to the manufacturers' instructions. The obtained results showed that 84.4% (38/45) of symptomatic tomato samples were infected with at least one of the detected viruses. The obtained results showed that 55.5% (25/45) of symptomatic tomato samples were found positive to ToBRFV, three out of 25 samples (12%) were singly infected, however 22 out of 45 (48.8%) had mixed infection between ToBRFV and with at least one of tested viruses. A sample with a single infection of ToBRFV was mechanically inoculated into different host range including: Chenopodium amaranticolor, C. quinoa, C. album, C. glaucum, Nicotiana glutinosa, N. benthamiana, N. tabacum, N. occidentalis, Gomphrena globosa, Datura stramonium, Solanum lycopersicum, S. nigrum, petunia hybrida and symptoms were observed weekly and the systemic presence of the ToBRFV was confirmed by RT-PCR and partial nucleotide sequence. A Total RNA was extracted from DAS-ELISA positive samples using Thermo Scientific GeneJET Plant RNA Purification Mini Kit. Reverse transcription-Polymerase chain reaction (RT-PCR) was carried out using specific primers F-3666 (5´-ATGGTACGAACGGCGGCAG-3´) and R-4718 (5´-CAATCCTTGATGTG TTTAGCAC-3´) which amplified a fragment of 1052 bp of Open Reading Frame (ORF) encoding the RNA-dependent RNA polymerase (RdRp). (Luria et al. 2017). RT-PCR products were analyzed using 1.5 % agarose gel electrophoresis. RT-PCR products were sequenced in both directions by Macrogen Inc. Seoul, South Korea. Partial nucleotide sequences obtained from selected samples were submitted to GenBank and assigned the following accession numbers: MZ130501, MZ130502, and MZ130503. BLAST analysis of Saudi isolates of ToBRFV showed that the sequence shared nucleotide identities ranged between 98.99 % to 99.50 % among them and 98.87-99.87 % identity with ToBRFV isolates from Palestine (MK881101 and MN013187), Turkey (MK888980, MT118666, MN065184, and MT107885), United Kingdom (MN182533), Egypt (MN882030 and MN882031), Jordan (KT383474), USA (MT002973), Mexico (MK273183 and MK273190), Canada (MN549395) and Netherlands (MN882017, MN882018, MN882042, MN882023, MN882024, and MN882045). To our knowledge, this is the first report of occurrence of ToBRFV infecting tomato in Saudi Arabia which suggests its likely introduction by commercial seeds from countries reported this virus and spread in greenhouses through mechanical means. The author(s) declare no conflict of interest. Keywords: Tomato brown rugose fruit virus, tomato, ELISA, RT-PCR, Saudi Arabia References: Luria N, et al., 2017. PLoS ONE 12(1): 1-19. Salem N, et al., 2015. Archives of Virology 161(2): 503-506. Fig. 1. Symptoms caused by ToBRFV showing irregular brown spots, deformation, yellowing spots on fruits (A, B, C) and bubbling and mottling, mosaic with dark green wrinkled and narrowing on leaf (D).


2018 ◽  
Vol 101 (1) ◽  
pp. 207-207 ◽  
Author(s):  
Ahmadu Tijjani ◽  
Siti Izera Ismail ◽  
Ahmad Khairulmazmi ◽  
Omar Dzolkhifli

2003 ◽  
Vol 52 (6) ◽  
pp. 800-800 ◽  
Author(s):  
Y. Aysan ◽  
M. Mirik ◽  
A. Ala ◽  
F. Sahin ◽  
O. Cinar

2019 ◽  
Vol 8 (34) ◽  
Author(s):  
Luciano A. Rigano ◽  
Merje Toome-Heller ◽  
Katharina M. Hofer ◽  
Brett J. R. Alexander

We report here the draft genome sequence of Pseudomonas sp. strain ICMP 22404, isolated from Solanum lycopersicum plants showing pith necrosis symptoms. The draft genome size is 6,686,400 bp, consisting of 86 contigs with a G+C content of 60.7% and containing 5,876 coding sequences, 60 tRNAs, and 11 rRNAs.


Sign in / Sign up

Export Citation Format

Share Document