scholarly journals First Report of Tuber Rot Disease of Kala Zeera Caused by a Member of the Fusarium solani Species Complex in India

Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1067-1067 ◽  
Author(s):  
V. Gupta ◽  
D. John ◽  
V. K. Razdan ◽  
S. K. Gupta

Bunium persicum (Kala zeera, also black cumin) is an economically important culinary crop that is cultivated for its seed pods and its tuberlike roots. In India, high-altitude regions of Himachal Pradesh, including the Padder valley and the Gurez area of Jammu and Kashmir, are areas of kalazeera production (3). In 2008 to 2009, tuber rot disease of kala zeera was observed during the late spring season in the Padder valley. Symptomatic plants were distributed in localized areas in the field and the symptoms included drying of foliage and rotting of tubers. White mycelia were found on the tubers at the late stages of disease development. Incidence of infection in the surveyed area was 80 to 90%. Yield losses were 50 to 60%. To isolate the causal pathogen, we cultured tissues from symptomatic tubers. Small bits of the infected tissue were surface disinfested in 0.1% mercuric chloride, followed by rinsing three times in sterile distilled water. The surface disinfested tissues were plated on potato dextrose agar (PDA) and incubated at 27°C for 4 days. Pure cultures of the mycelium from the diseased tissues were transferred to a second set of PDA for species identification. The fungus produced three types of spores: small, one-celled, oval microconidia; large, slightly curved, septate macroconidia; and rounded, thick-walled chlamydospores. Microconidia were mostly non-septate and 8.91 to 15.73 × 2.3 to 3.5 μm, whereas macroconidia were three- to five-septate and were 35.55 to 54.74 × 3.91 to 6.5 μm. On the basis of morphological characteristics (1), the fungus was identified and deposited as a member of the Fusarium solani species complex in the Indian Type Culture Collection, New Delhi (ID No. 8422.11). To confirm pathogenicity, healthy tubers were submerged for 20 min in a conidial suspension of the isolated fungus (1 × 105 cfu/ml), which was prepared in potato dextrose broth, incubated for 10 days at 27°C, and centrifuged at 140 rpm. Noninoculated controls were submerged in distilled water. Inoculated and control tubers were then planted in separate pots filled with sterilized soil and kept in a shade house. Symptoms appeared on inoculated tubers 9 to 10 days after planting. Signs of the pathogen in the form of mycelia were present. The tubers rotted and died 12 to 15 days after inoculation. Control tubers did not display any symptoms. F. solani species complex was reisolated from inoculated tubers, fulfilling Koch's postulates. F. solani has been reported to cause corm rot on gladiolus and saffron (2). To our knowledge, this is the first report of the F. solani species complex as pathogenic to tubers of kalazeera in India. References: (1) C. Booth. The Genus Fusarium. 47, 1971. (2) L. Z. Chen et al. J. Shanghai Agric. College 12:240, 1994. (3) K. S. Panwar et al. Agriculture Situation in India. 48:151, 1993.

Plant Disease ◽  
2021 ◽  
Author(s):  
Sixto Velarde Felix ◽  
Victor Valenzuela ◽  
Pedro Ortega ◽  
Gustavo Fierros ◽  
Pedro Rojas ◽  
...  

Chickpea (Cicer aretinium L.) is a legume crop of great importance worldwide. In January 2019, wilting symptoms on chickpea (stunted grow, withered leaves, root rot and wilted plants) were observed in three fields of Culiacan Sinaloa Mexico, with an incidence of 3 to 5%. To identify the cause, eighty symptomatic chickpea plants were sampled. Tissue from roots was plated on potato dextrose agar (PDA) medium. Typical Fusarium spp. colonies were obtained from all root samples. Ten pure cultures were obtained by single-spore culturing (Ff01 to Ff10). On PDA the colonies were abundant with white aerial mycelium, hyphae were branched and septae and light purple pigmentation was observed in the center of old cultures (Leslie and Summerell 2006). From 10-day-old cultures grown on carnation leaf agar medium, macroconidias were falciform, hyaline, with slightly curved apexes, three to five septate, with well-developed foot cells and blunt apical cells, and measured 26.6 to 45.8 × 2.2 to 7.0 μm (n = 40). The microconidia (n = 40) were hyaline, one to two celled, produced in false heads that measured 7.4 to 20.1 (average 13.7) μm × 2.4 to 8.9 (average 5.3) μm (n = 40) at the tips of long monophialides, and were oval or reniform, with apexes rounded, 8.3 to 12.1 × 1.6 to 4.7 μm; chlamydospores were not evident. These characteristics fit those of the Fusarium solani (Mart.) Sacc. species complex, FSSC (Summerell et al. 2003). The internal transcribed spacer and the translation elongation factor 1 alpha (EF1-α) genes (O’Donnell et al. 1998) were amplified by polymerase chain reaction and sequenced from the isolate Ff02 and Ff08 (GenBank accession nos. KJ501093 and MN082369). Maximum likelihood analysis was carried out using the EF1-α sequences (KJ501093 and MN082369) from the Ff02 and Ff08 isolates and other species from the Fusarium solani species complex (FSSC). Phylogenetic analysis revealed the isolate most closely related with F. falciforme (100% bootstrap). For pathogenicity testing, a conidial suspension (1x106 conidia/ml) was prepared by harvesting spores from 10-days-old cultures on PDA. Twenty 2-week-old chickpea seedlings from two cultivars (P-2245 and WR-315) were inoculated by dipping roots into the conidial suspension for 20 min. The inoculated plants were transplanted into a 50-hole plastic tray containing sterilized soil and maintained in a growth chamber at 25°C, with a relative humidity of >80% and a 12-h/12-h light/dark cycle. After 8 days, the first root rot symptoms were observed on inoculating seedlings and the infected plants eventually died within 3 to 4 weeks after inoculation. No symptoms were observed plants inoculated with sterilized distilled water. The fungus was reisolated from symptomatic tissues of inoculated plants and was identified by sequencing the partial EF1-α gene again and was identified as F. falciforme (FSSC 3 + 4) (O’Donnell et al. 2008) based on its morphological characteristics, genetic analysis, and pathogenicity test, fulfilling Koch’s postulates. The molecular identification was confirmed via BLAST on the FusariumID and Fusarium MLST databases. Although FSSC has been previously reported causing root rot in chickpea in USA, Chile, Spain, Cuba, Iran, Poland, Israel, Pakistan and Brazil, to our knowledge this is the first report of root rot in chickpea caused by F. falciforme in Mexico. This is important for chickpea producers and chickpea breeding programs.


Plant Disease ◽  
2021 ◽  
Author(s):  
Di Wu ◽  
Danhua Zhang ◽  
Caixia Wang ◽  
Yue Wei ◽  
Michael Paul Timko ◽  
...  

Loquat (Eriobotrya japonica), a native fruit tree to China, is a popular edible fruit with medicinal properties (Badenes et al. 2013). A 2016-2019 field survey of ~13,000 loquat trees in two orchards in Chongqing and Fujian provinces showed about 5 to 10% root rot disease incidence. The disease symptoms included leaf yellowing, wilting, rotting of main root, and cracking of lateral roots, eventually leading to defoliation and death. To determine the causative agent, diseased roots from six trees were collected, washed in tap water, cut into 2-3 mm pieces, and disinfected for 3 min in 75% (v/v) EtOH. After rinsing in sterilized water, the root pieces were soaked in 10% NaClO (w/v) for 5-10 min, rinsed thrice in sterile water, and plated on potato dextrose agar (PDA). After 7 days of incubation at 25°C, individual spores were collected from the fungal colonies and replated. Single spore cultures growing on PDA gave rise to woolly-cottony, cream-white colored aerial mycelium and a yellowish pigmented mycelium. The average colony growth rate was 8.6 mm day-1 (n=3). Microscopic observation of the mycelium revealed septate and hyaline hyphae and long cylindrical monophialides. Macroconidia were moderately curved, stout, 3-4 septate, measuring 20.79-48.70 μm × 4.16-10.14 μm (n=50). Microconidia produced from long phialides were kidney-shaped, 0-2 septate, and 5.72-17.28 μm × 2.29-6.51 μm (n=50) in size. The mycelial characteristics and reproductive structures of the isolates fit the morphological description of Fusarium sp. (Summerell et al. 2003). To confirm this identification, translation elongation factor (EF-1α) and RNA polymerase I beta subunit (RPB1) and RNA polymerase II beta subunit (RPB2) regions of the genome were PCR amplified from 3 separate isolates (R2, R4 and R5) using EF1/ EF2, RPB1-Fa/G2R, RPB2-5f2/7cR & RPB2-7cF/11aR primer pairs (O’Donnell et al. 2010) and sequenced. BLASTn comparison of the EF-1α (MT976167), RPB1 (MT967271) and RPB2 (MW233052) regions from isolate R4 showed 99% identity with the EF-1α (GU170620, 675/676 bp), RPB1 (KC808270, 1543/1545 bp) and RPB2 (MK4419902, 1637/1638 bp) sequences of Fusarium solani species complex (FSSC) in GenBank database. The same species level identification was also found using FUSARIUM-ID and FUSARIUM-MLDT databases. Two-year-old seedlings (n=3) of two different cultivars, ‘Hunanzaoshu’ and ‘Huabai No. 1’, growing in pots indoors at 25-27 °C were inoculated by drenching the soil with a conidial suspension of isolate R4 (40 mL, 106 conidia mL-1 obtained from 6-10 day old cultures). Control plants (n=3) were inoculated with sterilized water. At 20 days after inoculation (DAI) the leaves of inoculated plants became chlorotic and wilted, defoliated over time, and by 53 DAI 91.67% of plants died. The taproot and lateral roots of inoculated plants appeared brown to black in color and most lateral roots died and decomposed at 53 DAI, whereas the control plant roots remained healthy. All control plants remained symptomless. Based on morphological and molecular characters (TEF-1, RPB1 and RPB2), the re-isolated pathogen from diseased plants was identical to the R4 isolate used for inoculation and the disease assays were repeated thrice. FSSC was recently reported to cause fruit rot disease on loquat in Pakistan (Abbas et al. 2017). Identifying Fusarium solani species complex as a disease agent in Chinese loquat will assist in future development of improved germplasm for this important worldwide tree crop.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jian Liu ◽  
Xiaomei GUO ◽  
Hui Zhang ◽  
Yue Cao ◽  
QUN SUN

Hardy kiwifruit (Actinidia arguta), as an economically important fruit crop growing in Northeast China with thin, hairless and smooth skin, is susceptible to postharvest decay. In September 2018, infected cultivar Kwilv fruits were obtained from a commercial farm in Liaoning province, northeastern China. The occurring incidence of the rot disease varied from 20% to 90% according to the fruit number in each box during a 7-day-long storage at room temperature, and the initial symptom included a small, soft, chlorosis to light brown lesion and later watery brown lesions. Pure cultures of the same characteristics were obtained from the isolated strains in four rotten fruits on PDA medium. The isolates grew into transparent radial mycelium on PDA in the first two days followed by abundant white, fluffy aerial mycelium. After 14 days, colonies formed white to light brown aerial mycelial mats with gray concentric rings, and they produced gray and embedded pycnidia. Alpha conidia of 4.4 to 8.8 µm × 1.4 to 3.3 µm (n = 50) were abundant in culture, hyaline, aseptate, ellipsoidal to fusiform, while Beta conidia at 20.5 to 28.6 µm × 1.0 to 1.4 µm (n = 50) were hyaline, long, slender, curved to hamate. These morphological characteristics were similar to Diaporthe species (anamorph: Phomopsis spp.) (Udayanga et al. 2014). For identification, DNA was extracted from three single isolates respectively , and the internal transcribed spacer (ITS) region, β-tubulin (BT), and histone (HIS) H3 gene were amplified by using primers ITS1/ITS4 (White et al. 1990), T1/T22 (O'Donnell et al. 1997) and HIS1F/HISR (Gao et al. 2017), respectively. The three isolates produced identical sequences across all three gene regions, which were submitted to NCBI (Genbank accession numbers MT561361, MT561360 and MT855966). Nucleotide BLAST analysis revealed that the ITS sequence shared 99% homology with those of ex-type Diaporthe eres in NCBI GenBank (MG281047.1 and KJ210529.1), so did the BT sequence that had 98% identity to D. eres (MG281256.1 and KJ420799.1) and the HIS 99% identity to D. eres (MG28431.1 and MG281395.1) (Hosseini et al. 2020, Udayanga et al. 2014). Pathogenicity was tested by wound inoculation on the cv. Kwilv fruits. Five mature and healthy fruits were surface-sterilized with 1% NaClO solution, rinsed in sterile distilled water and dried. Every fruit was wounded by penetrate the peel 1-2 mm with a sterile needle, and inoculated with mycelium plugs (5 mm in diameter) of the isolate on PDA, with five inoculated with sterile PDA plugs as controls. Treated fruits were kept in sterilized transparent plastic cans separately under high humidity (RH 90 to 100%) at 28°C. After five days, the same rot symptoms were observed on all fruits inoculated with mycelium while the control remained symptomless. The fungi was re-isolated from the lesions of inoculated fruits and identified as D. eres by sequencing, thus fulfilling Koch's postulates. The pathogenicity experiment was re-performed using D. eres conidial suspension (107 conidia/ml) in sterile distilled water in October 2019 and the same results were obtained. D. eres was recently reported to cause European pear rot in Italy (Bertetti et al. 2018). To our knowledge, this is the first report of D. eres causing a postharvest rot in hardy kiwifruit in China, leading to severe disease and thus huge economic losses in Northeast China. Accordingly, effective measures should be taken to prevent its spreading to other production regions in China.


Plant Disease ◽  
2007 ◽  
Vol 91 (3) ◽  
pp. 325-325 ◽  
Author(s):  
S. Vitale ◽  
M. Maccaroni ◽  
A. Belisario

Zucchini plant collapse has been often associated with Fusarium solani f. sp. cucurbitae race 1, which is the causal agent of Fusarium crown and foot rot disease of cucurbits. In Italy, F. solani f. sp. cucurbitae race 1 has been reported on zucchini (Cucurbita pepo) in a greenhouse in the Tuscany Region (4). In spring 2005, a severe outbreak was observed on zucchini in a vast area of cultivation in the province of Venice. Isolations from necrotic vessels gave more than 20 single-spore cultures. On the basis of morphological characteristics, they were identified as F. solani (2) and Plectosporium tabacinum (3). The internal transcribed spacer (ITS) region of rDNA was amplified and sequenced. A fragment of 454 and 531 bp was 99% homologous with sequence PSU66732 and AF150472 of F. solani f. sp. cucurbitae race 1 and P. tabacinum, respectively, in the NCBI database. The nucleotide sequences have been assigned Accession No. AM408782 for F. solani f. sp. cucurbitae race 1 and AM408781 for P. tabacinum. Pathogenicity tests were conducted with four isolates of each species on 15-day-old zucchini plants and on fruit. Plants were inoculated by dipping the roots in a conidial suspension of 106 spores ml-1 for 10 min. Control plants were dipped in sterile water. Five replicates for the inoculated and control plants were used. All plants were maintained in a greenhouse at approximately 24°C. After 14 days, inoculations with F. solani f. sp. cucurbitae race 1 gave symptoms of a cortical rot at the base of the stem with a progressive yellows and wilting of leaves, while plants inoculated with P. tabacinum displayed a moderate wilting. Fruit were washed under running water, disinfected with a solution of 3% sodium hypochlorite and 5% ethanol for 1 min, and inoculated with 6-mm-diameter mycelial plugs cut from the margin of 10-day-old cultures grown on PDA. Plugs were inserted into holes (approximately 2 mm deep) made with a sterile 7-mm-diameter cork borer. Five replicates per isolate were used. Fruit were kept at room temperature (22 to 24°C) in a moist chamber. All isolates induced symptoms of fruit rotting 10 days after inoculation. All controls remained healthy. The colonies reisolated from the inoculated plants and fruit were morphologically identical to the original isolates. The results obtained proved that F. solani f. sp. cucurbitae race 1 can be considered the major pathogen in zucchini collapse, at the same time P. tabacinum may play a role in this syndrome as reported for other cucurbits (1). To our knowledge, this is the first report of zucchini plant collapse caused by F. solani f. sp. cucurbitae race 1 and P. tabacinum, and the first report of P. tabacinum on zucchini in Italy. References: (1) V. J. Garcia-Jimenez et al. EPPO Bull. 30:169, 2000. (2) P. E. Nelson et al. Fusarium Species: An Illustrated Manual for Identification. Pennsylvania State University, University Park, 1983. (3) M. E. Palm et al. Mycologia 87:397, 1995. (4) G. Vannacci and P. Gambogi. Phytopathol. Mediterr. 19:103, 1980.


Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1784 ◽  
Author(s):  
M. P. Melo ◽  
J. E. A. Beserra ◽  
K. S. Matos ◽  
C. S. Lima ◽  
O. L. Pereira

Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1273-1273 ◽  
Author(s):  
X.-M. Luo ◽  
J.-L. Li ◽  
J.-Y. Dong ◽  
A.-P. Sui ◽  
M.-L. Sheng ◽  
...  

China is the world's largest producer country of coptis (Coptis chinensis), the rhizomes of which are used in traditional Chinese medicine. Since 2008, however, root rot symptoms, including severe necrosis and wilting, have been observed on coptis plants in Chongqing, southwestern China. Of the plants examined from March 2011 to May 2013 in 27 fields, 15 to 30% were covered with black necrotic lesions. The leaves of infected plants showed wilt, necrotic lesions, drying, and death. The fibrous roots, storage roots, and rhizomes exhibited brown discoloration and progressive necrosis that caused mortality of the infected plants. Infected plants were analyzed to identify the causal organism. Discoloration of the internal vascular and cortical tissues of the rhizomes and taproots was also evident. Symptomatic taproots of the diseased coptis were surface sterilized in 1% sodium hypochlorite for 2 min, rinsed in sterile distilled water for 2 min, and then air-dried in sterilized atmosphere/laminar flow. Small pieces of disinfested tissue (0.3 cm in length) were transferred to petri dishes containing potato dextrose agar (PDA) supplemented with 125 μg ml–1 streptomycin sulfate and 100 μg ml–1 ampicillin, and incubated for 5 days at 25°C with a 12-h photoperiod. Four distinct species of fungal isolates (HL1 to 4) derived from single spores were isolated from 30 plants with root rot symptoms collected from the study sites. To verify the pathogenicity of individual isolates, healthy coptis plants were inoculated by dipping roots into a conidial suspension (106 conidia/ml) for 30 min (15 plants per isolate), as described previously (1). Inoculated plants were potted in a mixture of sterilized quartz sand-vermiculite-perlite (4:2:1, v/v) and incubated at 25/18°C and 85 to 90% relative humidity (day/night) in a growth chamber with a daily 16-h photoperiod of fluorescent light. Plants dipped in sterile distilled water were used as controls. After 15 days, symptoms similar to those observed in the field were observed on all plants (n = 15) that were inoculated with HL1, but symptoms were not observed on plants inoculated with HL2, HL3, and HL4, nor on control plants. HL1 was re-isolated from symptomatic plants but not from any other plants. Morphological characterization of HL1 was performed by microscopic examination. The septate hyphae, blunt microconidia (2 to 3 septa) in the foot cell and slightly curved microconidia in the apical cell, and chlamydospores were consistent with descriptions of Fusarium solani (2). The pathogen was confirmed to be F. solani by amplification and sequencing of the ribosomal DNA internal transcribed spacer (rDNA-ITS) using the universal primer pair ITS4 and ITS5. Sequencing of the PCR product revealed a 99 to 100% similarity with the ITS sequences of F. solani in GenBank (JQ724444.1 and EU273504.1). Phylogenetic analysis (MEGA 5.1) using the neighbor-joining algorithm placed the HL1 isolate in a well-supported cluster (97% bootstrap value based on 1,000 replicates) with JQ724444.1 and EU273504.1. The pathogen was thus identified as F. solani based on its morphological and molecular characteristics. To our knowledge, this is the first report of root rot of coptis caused by F. solani in the world. References: (1) K. Dobinson et al. Can. J. Plant Pathol. 18:55, 1996. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, 2006.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhou Zhang ◽  
Zheng Bing Zhang ◽  
Yuan Tai Huang ◽  
FeiXiang Wang ◽  
Wei Hua Hu ◽  
...  

Peach [Prunus persica (L.) Batsch] is an important deciduous fruit tree in the family Rosaceae and is a widely grown fruit in China (Verde et al., 2013). In July and August 2018, a fruit rot disease was observed in a few peach orchards in Zhuzhou city, the Hunan Province of China. Approximately 30% of the fruit in more than 400 trees was affected. Symptoms displayed were brown necrotic spots that expanded, coalesced, and lead to fruit being rotten. Symptomatic tissues excised from the margins of lesions were surface sterilized in 70% ethanol for 10 s, 0.1% HgCl2 for 2 min, rinsed with sterile distilled water three times, and incubated on potato dextrose agar (PDA) at 26°C in the dark. Fungal colonies with similar morphology developed, and eight fungal colonies were isolated for further identification. Colonies grown on PDA were grayish-white with white aerial mycelium. After an incubation period of approximately 3 weeks, pycnidia developed and produced α-conidia and β-conidia. The α-conidia were one-celled, hyaline, fusiform, and ranged in size from 6.0 to 8.4 × 2.1 to 3.1 μm, whereas the β-conidia were filiform, hamate, and 15.0 to 27.0 × 0.8 to 1.6 μm. For molecular identification, total genomic DNA was extracted from the mycelium of a representative isolate HT-1 and the internal transcribed spacer region (ITS), β-tubulin gene (TUB), translation elongation factor 1-α gene (TEF1), calmodulin (CAL), and histone H3 gene (HIS) were amplified and sequenced (Meng et al. 2018). The ITS, TUB, TEF1, CAL and HIS sequences (GenBank accession nos. MT740484, MT749776, MT749778, MT749777, and MT749779, respectively) were obtained and in analysis by BLAST against sequences in NCBI GenBank, showed 99.37 to 100% identity with D. hongkongensis or D. lithocarpus (the synonym of D. hongkongensis) (Gao et al., 2016) (GenBank accession nos. MG832540.1 for ITS, LT601561.1 for TUB, KJ490551.1 for HIS, KY433566.1 for TEF1, and MK442962.1 for CAL). Pathogenicity tests were performed on peach fruits by inoculation of mycelial plugs and conidial suspensions. In one set, 0.5 mm diameter mycelial discs, which were obtained from an actively growing representative isolate of the fungus on PDA, were placed individually on the surface of each fruit. Sterile agar plugs were used as controls. In another set, each of the fruits was inoculated by application of 1 ml conidial suspension (105 conidia/ml) by a spray bottle. Control assays were carried out with sterile distilled water. All treatments were maintained in humid chambers at 26°C with a 12-h photoperiod. The inoculation tests were conducted twice, with each one having three fruits as replications. Six days post-inoculation, symptoms of fruit rot were observed on inoculated fruits, whereas no symptoms developed on fruits treated with agar plugs and sterile water. The fungus was re-isolated and identified to be D. hongkongensis by morphological and molecular methods, thus fulfilling Koch’s Postulates. This fungus has been reported to cause fruit rot on kiwifruit (Li et al. 2016) and is also known to cause peach tree dieback in China (Dissanayake et al. 2017). However, to our knowledge, this is the first report of D. hongkongensis causing peach fruit rot disease in China. The identification of the pathogen will provide important information for growers to manage this disease.


Botany ◽  
2014 ◽  
Vol 92 (11) ◽  
pp. 815-820 ◽  
Author(s):  
Khosrow Chehri

Members of Fusarium solani species complex (FSSC) are frequently isolated from soils, food, feeds, trees, and to some extent from humans and other animals. The taxonomic status of these fungi is being revised but no attempt has been made to identify those isolated in Iran, a mountainous country with a high biodiversity. The objective of the present research was to study the phylogenetic diversity of FSSC strains recovered from soils in Iran by analyzing morphological characteristics and DNA sequences. A total of 65 strains belonging to the FSSC were recovered from agricultural soils in western Iran. Based on differences in their morphological characters, 25 strains were selected for phylogenetic analysis employing translation elongation factor-1α (tef1) and internal transcribed spacer (ITS) region sequences. Comparisons of DNA sequence data revealed that all isolates belonged to Fusarium falciforme, Fusarium keratoplasticum, Fusarium petroliphilum, the unnamed species FSSC 5, and unknown species of Fusarium, which represents a new lineage within members of Clade 3. Based on morphological features and phylogenetic study, F. keratoplasticum and F. petroliphilum were reported for the first time in Iran.


Plant Disease ◽  
2021 ◽  
Author(s):  
Oliul Hassan ◽  
Taehyun Chang

In South Korea, ovate-leaf atractylodes (OLA) (Atractylodes ovata) is cultivated for herbal medicine. During May to June 2019, a disease with damping off symptoms on OLA seedlings were observed at three farmer fields in Mungyeong, South Korea. Disease incidence was estimated as approximately 20% based on calculating the proportion of symptomatic seedlings in three randomly selected fields. Six randomly selected seedlings (two from each field) showing damping off symptoms were collected. Small pieces (1 cm2) were cut from infected roots, surface-sterilized (1 minute in 0.5% sodium hypochlorite), rinsed twice with sterile water, air-dried and then plated on potato dextrose agar (PDA, Difco, and Becton Dickinson). Hyphal tips were excised and transferred to fresh PDA. Six morphologically similar isolates were obtained from six samples. Seven-day-old colonies, incubated at 25 °C in the dark on PDA, were whitish with light purple mycelia on the upper side and white with light purple at the center on the reverse side. Macroconidia were 3–5 septate, curved, both ends were pointed, and were 19.8–36.62 × 3.3–4.7 µm (n= 30). Microconidia were cylindrical or ellipsoid and 5.5–11.6 × 2.5–3.8 µm (n=30). Chlamydospores were globose and 9.6 –16.3 × 9.4 – 15.0 µm (n=30). The morphological characteristics of present isolates were comparable with that of Fusarium species (Maryani et al. 2019). Genomic DNA was extracted from 4 days old cultures of each isolate of SRRM 4.2, SRRH3, and SRRH5, EF-1α and rpb2 region were amplified using EF792 + EF829, and RPB2-5f2 + RPB2-7cr primer sets, respectively (Carbone and Kohn, 1999; O'Donnell et al. 2010) and sequenced (GenBank accession number: LC569791- LC569793 and LC600806- LC600808). BLAST query against Fusarium loci sampled and multilocus sequence typing database revealed that 99–100% identity to corresponding sequences of the F. oxysporum species complex (strain NRRL 28395 and 26379). Maximum likelihood phylogenetic analysis with MEGA v. 6.0 using the concatenated sequencing data for EF-1α and rpb2 showed that the isolates belonged to F. oxysporum species complex. Each three healthy seedlings with similar sized (big flower sabju) were grown for 20 days in a plastic pot containing autoclaved peat soil was used for pathogenicity tests. Conidial suspensions (106 conidia mL−1) of 20 days old colonies per isolate (two isolates) were prepared in sterile water. Three pots per strain were inoculated either by pouring 50 ml of the conidial suspension or by the same quantity of sterile distilled water as control. After inoculation, all pots were incubated at 25 °C with a 16-hour light/8-hour dark cycle in a growth chamber. This experiment repeated twice. Inoculated seedlings were watered twice a week. Approximately 60% of the inoculated seedlings per strain wilted after 15 days of inoculation and control seedlings remained asymptomatic. Fusarium oxysporum was successfully isolated from infected seedling and identified based on morphology and EF-1α sequences data to confirm Koch’s postulates. Fusarium oxysporum is responsible for damping-off of many plant species, including larch, tomato, melon, bean, banana, cotton, chickpea, and Arabidopsis thaliana (Fourie et al. 2011; Hassan et al.2019). To the best of our knowledge, this is the first report on damping-off of ovate-leaf atractylodes caused by F. oxysporum in South Korea. This finding provides a basis for studying the epidemic and management of the disease.


Sign in / Sign up

Export Citation Format

Share Document