scholarly journals Draft Genome Sequence of Cumin Blight Pathogen Alternaria burnsii

Plant Disease ◽  
2020 ◽  
Author(s):  
Zhonghong Feng ◽  
Tom Hsiang ◽  
Xiaofei Liang ◽  
Rong Zhang ◽  
Guangyu Sun

The fungal genus Alternaria consists of highly diverse species. They can be isolated readily from soil, water and many plants, and even from animals and humans. Alternaria burnsii is a small-spored species of section Alternaria. It has been reported as a pathogen, an endophyte and a saprophyte, and can also be found in indoor air. It causes cumin blight, a destructive disease on cumin (Cuminum cyminum), and also causes other serious diseases, such as pumpkin seed rot, date palm leaf spot, wheat leaf spot, and gray spot of Notopterygium incisum. In this study, we sequenced and assembled the first genome of A. burnsii isolate CBS 107.38. The draft genome can be used as a reference for the further study of related pathogens and comparative genomics of Alternaria species.

2020 ◽  
Vol 102 (3) ◽  
pp. 959-959
Author(s):  
Esmaeil Basavand ◽  
Ali Pakdin-Parizi ◽  
Hossein-Ali Mirhosseini ◽  
Mojtaba Dehghan-Niri

2021 ◽  
Vol 10 (17) ◽  
Author(s):  
Takashi Fujikawa ◽  
Yuichi Takikawa ◽  
Yasuhiro Inoue

ABSTRACT Pseudomonas cannabina pv. alisalensis and Pseudomonas syringae pv. maculicola cause bacterial leaf blight and bacterial leaf spot of crucifers (Brassicaceae). Both pathogens are threats to the cultivation of cruciferous crops. Here, we sequenced two strains of each pathogen, which will contribute to the development of countermeasures for the above diseases.


2020 ◽  
Vol 9 (30) ◽  
Author(s):  
Alexandre Malette ◽  
Renlin Xu ◽  
Suzanne Gerdis ◽  
Sylvia I. Chi ◽  
Greg C. Daniels ◽  
...  

ABSTRACT We report whole-genome sequences of two new Pantoea strains (DOAB1048 and DOAB1050) isolated from necrotic wheat leaves caused by Xanthomonas translucens. The draft genome sequences of DOAB1048 and DOAB1050 consist of 52 and 57 scaffolds and have sizes of 4,795,525 bp and 4,962,883 bp with 4,418 and 4,517 coding sequences, respectively.


2020 ◽  
Vol 71 (7) ◽  
pp. 689
Author(s):  
Hebba F. D. Al-Lami ◽  
Ming Pei You ◽  
Martin J. Barbetti

Both Alternaria japonica and A. brassicae cause severe Alternaria leaf spot on canola (Brassica napus) and mustard (B. juncea). We tested 103 Brassicaceae varieties including 93 Australian canola, nine Indian mustard, and a single variety of Ethiopian mustard (B. carinata) under greenhouse conditions to identify host resistance to Alternaria leaf spot caused by A. japonica and A. brassicae in terms of disease incidence (percentage leaf disease incidence, %LDI), disease severity (percentage leaf area diseased, %LAD) and defoliation (percentage leaf collapse index, %LCI). Against A. japonica, across the three parameters, B. napus Surpass 404 CL was the most resistant (%LDI 7.5, %LAD 5.0, %LCI 0). Varieties Hyola 635 CC, Oscar, AG-Outback and Rottnest, with %LDI 15.6–19.4 and %LAD 12.5–15.6, also showed strong resistance, and with %LCI 10. Varieties 47C02, ATR-Signal and Clancy of B. napus showed a moderate level of resistance across %LDI (21.2–25.6) and %LAD (15.0–20.6), along with a low level of defoliation (%LCI 10). Varieties 46C03, 46C72, ATR-Cobbler and Granite TT of B. napus also showed a moderate level of resistance, with %LDI 23.1–28.7, %LAD 18.1–20.6 and %LCI 11.2–14.4. The significance of this resistance against A. japonica is highlighted by the severe disease on B. napus Thunder TT (%LDI 78.8, %LAD 72.5, %LCI 47.5). Against A. brassicae, all varieties showed susceptibility; however, B. napus ATR-Grace was the least susceptible in relation to disease incidence (%LDI 41.2) and severity (%LAD 36.2), and B. napus Hyola 450 TT the most susceptible (%LDI 90.0, %LAD 82.5). Variety Hurricane of B. napus was the least susceptible in terms of consequent defoliation (%LCI 11.2) and B. napus CBTM Tribune the most susceptible (%LCI 81.2). The B. carinata variety BCA 1 (ATC 95065) and all test B. juncea varieties showed susceptibility to both pathogens. These findings demonstrate high levels of resistance across Australian canola varieties against A. japonica that can be directly deployed where A. japonica is important and can be utilised by breeders for improving resistance in future varieties. By contrast, susceptibility across Australian canola and mustard varieties to A. brassicae is concerning, highlighting a need to locate suitable resistances and, until effective host resistance can be located, to develop and deploy cultural and chemical options.


2020 ◽  
Vol 110 (9) ◽  
pp. 1507-1510
Author(s):  
Jingyu Peng ◽  
J. Alejandro Rojas ◽  
Hyunkyu Sang ◽  
Tyre J. Proffer ◽  
Cory A. Outwater ◽  
...  

Blumeriella jaapii is the causal agent of cherry leaf spot (CLS), the most important disease of tart cherry in the Midwestern United States. Infection of leaves by B. jaapii leads to premature defoliation, which places trees at heightened risk of winter injury and death. Current management of CLS relies primarily on the application of three important fungicide classes, quinone outside inhibitors, sterol demethylation inhibitors, and succinate dehydrogenase inhibitors. Here, we present the first high-quality genome of B. jaapii through a hybrid assembly of PacBio long reads and Illumina short reads. The assembled draft genome of B. jaapii is 47.4 Mb and consists of 95 contigs with a N50 value of 1.5 Mb. The genomic information of B. jaapii, representing the most complete sequenced genome of the family Dermateaceae (Ascomycota) to date, provides a valuable resource for identifying fungicide resistance mechanisms of this pathogen and expands our knowledge of the phytopathogenic fungi in this family.


1989 ◽  
Vol 35 (2) ◽  
pp. 117-119
Author(s):  
N. Mehta ◽  
P. C. Gupta ◽  
R. K. Thareja ◽  
J. K. Dang
Keyword(s):  

2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Mahmoud W. Yaish

In this report, a draft of theEnterobacter asburiaestrain PDA134 genome was sequenced. This bacterial strain was isolated from the root tissue of a date palm, where it has the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) under salinity stress.


Microbiology ◽  
2010 ◽  
Vol 79 (4) ◽  
pp. 561-565 ◽  
Author(s):  
L. A. Mikhailova ◽  
I. G. Ternyuk ◽  
N. V. Mironenko

Author(s):  
Yunpeng Gai ◽  
Haijie Ma ◽  
Yanan Chen ◽  
Lei Li ◽  
Yingze Cao ◽  
...  

Alternaria brown spot (ABS) caused by Alternaria alternata is an economically important fungal disease of citrus worldwide. The ABS pathogen A. alternata tangerine pathotype can produce a host-specific ACT toxin, which is regulated by ACT toxin gene cluster located in the conditionally dispensable chromosome (CDC). Previously, we have assembled a draft genome of A. alternata tangerine pathotype strain Z7, which comprises 165 contigs. In this study, we report a chromosome-level genome assembly of A. alternata Z7 through the combination of Oxford nanopore sequencing and Illumina sequencing technologies. The assembly of A. alternata Z7 had a total size of 34.28 Mb, with a GC content of 51.01% and contig N50 of Mb. The genome is encompassed 12067 protein-coding genes, 34 rRNAs, and 107 tRNAs. Interestingly, A. alternata Z7 is composed of 10 essential chromosomes (ECs) and 2 conditionally dispensable chromosomes (CDCs), which is consistent with the experimental evidences of pulsed-field gel electrophoresis (PFGE). To our best knowledge, this is the first chromosome-level genome assembly of A. alternata. In addition, a database for citrus-related Alternaria genomes has been established to provide public resources for the sequences, annotation and comparative genomics data of Alternaria species. The improved genome sequence and annotation at the chromosome level is a significant step toward a better understanding of the pathogenicity of A. alternata. The database will be updated regularly whenever the genomes of newly isolated Alternaria species are available. The citrus-related Alternaria genomes database is open accessible through http://www.zjudata.com/alternaria/blast.php.


2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Hiroyuki Morimura ◽  
Kazuma Uesaka ◽  
Michihiro Ito ◽  
Shigenobu Yoshida ◽  
Motoo Koitabashi ◽  
...  

Actinomycete Nocardioides sp. strain LS1, isolated from wheat leaf, is a bacterium that degrades and assimilates the mycotoxin deoxynivalenol (DON) as the carbon source.


Sign in / Sign up

Export Citation Format

Share Document