scholarly journals First Report of Meloidogyne graminicola on Rice in Henan Province, China

Plant Disease ◽  
2021 ◽  
Author(s):  
Mao-Yan Liu ◽  
Jing Liu ◽  
Wenkun Huang ◽  
Deliang Peng

Rice (Oryza sativa) is an important food crop in China and root-knot nematode Meloidogyne graminicola has been one of the most important diseases on rice in recently five years (Ju et al. 2020). In August 2020, rice plants were found to be maldeveloped, yellow leaves and hooked root tips in an irrigated paddy field of Yuanyang County, Xinxiang City, Henan Province. Fifty rice plants were randomly collected and 84.0 percent plants were infected with root-knot nematodes, with root-gall index of 56.0. Then nematodes from rice roots were isolated with 100-μm and 25-μm sieves. A large number of females, some third-stage juveniles (J3s), and a small number of males of Meloidogyne spp. were found in root galls of all samples after dissected, and then were identified and measured under the microscope. In females (n = 20), the perineal pattern was dorsoventrally oval with low and round dorsal arch, and the lateral field was not obvious or absent, striae are usually smooth, with occasional short and irregular striatal fragmentation. The morphological data of females are as follows: body length (BL) = 516.9 ± 72.5 μm (424.2 to 611.6 μm), body width (BW)= 328.4 ± 80.7 μm (232.1 to 437.4 μm), stylet length = 11.2 ± 1.3 μm (7.7 to 13.9 μm), dorsal pharyngeal gland orifice to stylet base (DGO) = 3.9 ± 0.5 μm (3.2 to 4.5 μm), vulval slit length = 24.3 ± 4.6 μm (15.2 to 31.4 μm), vulval slit to anus distance = 16.2 ± 2.5 μm (10.1 to 20.2 μm). Males are long cylindrical, wormlike, with a short round tail. Morphological measurements of males (n = 20) were BL = 1,218.0 ± 150.7μm (1,085.7 to 1,692.2 μm), BW = 34.2 ± 4.6 μm (28.5 to 39.7 μm), stylet = 17.4 ± 0.7 μm (15.9 to 19.3 μm), DGO = 3.6 ± 0.7 μm (2.5 to 4.5 μm), tail = 10.8 ± 2.1 μm (8.0 to 14.8 μm), spicule = 30.3 ± 2.6 μm (24.7 to 36.3 μm). The egg masses from the females were incubated at 28℃ for 48 hours. Measurements of J2s (n = 20) were BL = 444.2 ± 37.8 μm (315.7 to 547.5 μm), BW = 21.2 ± 2.7 μm (16.7 to 26.4 μm), stylet = 14.2 ± 0.3 μm (13.6 to 14.8 μm), DGO = 3.5 ± 0.5 μm (2.7 to 4.5 μm), tail = 70.8 ± 5.1 μm (61.3 to 80.8 μm), hyaline tail length = 21.0 ± 2.5 μm (16.3 to 26.1 μm). These morphological features are consistent with the original description by Golden and Birchfield (1965). DNA of a single female from each sample was extracted for molecular identification. Primer pairs D2A/D3B (5´-ACAAGTACCGTGAGGGAAAGTTG-3´/ 5´-TCGGAAGGAACCAGCTACTA-3´) (De Ley et al. 1999) and the species-specific primers Mg-F3/Mg-R2 (5′-TTATCGCATCATTTTATTTG-3′/ 5′-CGCTTTGTTAGAAAATGACCCT-3′) (Htay et al. 2016) were used to amplify D2/D3 region of 28S RNA and the internal transcribed spacer (ITS) region, respectively. The amplified sequences of D2/D3 region (GenBank MW490724, 766 bp) shared 99.9% and 99.7% homology with the sequences of M. graminicola (MN647592, MT576694) isolated from Guangxi and Anhui Province (Ju et al. 2020), respectively, while ITS region sequences (MW487239, 369 bp) shared 100% and 99.7% homology to M. graminicola isolate GXL3 (MN636702) and FQJJ01 (MT159690), respectively. In order to verify the pathogenicity of nematodes, about 300 J2s were inoculated on ten 14-week-old rice (Oryza sativa cv. Nipponbare) planted in pots with sterilized sandy soil, respcectively, and maintained in a greenhouse at 28°C/26°C with a 16h/8h light/dark photoperiod and 75% relative humidity. At 14 days post inoculation, obvious symptoms of hook galls were observed on roots in all inoculated rice plants, and females and males in the same shape as the collected samples were found in the root galls under the stereoscopic microscope. No symptoms were observed on non-inoculated rice plants. After 28 days, the growth of the inoculated rice plants was significantly worse than that of uninoculated ones, with yellow leaves and short plants. These results confirmed the pathogenicity of M. graminicola on rice and it indicated that M. graminicola was already spread from the main rice-producing areas to the wheat and rice rotation areas. To our knowledge, this is the first report of M. graminicola in the Henan Province of China.

Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 277-277 ◽  
Author(s):  
Y. Wang ◽  
K.-D. Xu ◽  
Y. Zhang ◽  
K. Liu ◽  
F.-L. Zhang ◽  
...  

Carrot (Daucus carota) is an important root vegetable crop in China, which accounted for 46% of global production in 2011. Carrot was grown in Henan Province on >20,000 ha/year, which ranks first in China for area of carrots harvested. In October 2012, a powdery mildew outbreak was observed in 16 investigated carrot production fields in Zhoukou, Henan Province, in central China. White colonies typical of powdery mildew were seen on leaves of affected plants. The colonies enlarged and finally coalesced. Small, scattered fruiting bodies found on the adaxial and abaxial leaf surfaces were determined microscopically to be chasmothecia. Examining the pathogen morphologically revealed that appressoria were lobed, conidiophores were straight and bore single conidia, and cylindrical foot cells were followed by one to three shorter cells in the conidiophores. Conidiophores were subhyaline and 54.1 to 66.1 × 6.1 to 8.1 μm. Conidia were barrel-cylindrical and 28.8 to 38.6 × 11.4 to 14.8 μm. Chasmothecia were subspherical, dark brown to black, formed hyphoid appendages, and 110 to 122 μm in diameter. Appendages typically had one to five branches, which were nearly dichotomous or irregular, flexuous or almost straight, and 30 to 165 μm long. Each chasmothecium contained multiple asci that were saccate, multiguttulate, short-stipitate or not, 62.5 to 63.8 × 43.2 to 45.9 μm, and each contained two to six ascospores. Ascospores were subhyaline, ovoid to ellipsoid, and 16.5 to 17.7 × 11.2 to 12.7 μm. Based on characteristics of the anamorphic and teleomorphic stages, the fungus was identified as Erysiphe heraclei (2,4). To verify the identity, the internal transcribed spacer (ITS) region of ribosomal DNA was amplified with universal primers ITS1 and ITS4, and sequenced. The ITS sequence was assigned GenBank Accession No. KC480605, and showed 100% similarity to ITS sequences of E. heraclei on carrot in GenBank (EU371725 and GU252368). Koch's postulates were completed by using detached infected leaves from 10-week-old carrot plants growing in a field to inoculate 10 healthy, 5-week-old plants of the carrot cultivar Dinghong, growing in a growth chamber under 22/16°C (day/night) cycle at 50% relative humidity with 120 μmol/m2/s light and a 14-h photoperiod. Ten non-inoculated plants served as replicates of a control treatment. Symptoms consistent with those in the field were observed on inoculated plants 20 days post-inoculation. No symptoms were observed on the control plants. Microscopic observation of the pathogen growing on the inoculated plants revealed that it was the same as the original fungus. Powdery mildew on carrot has been observed in many countries including Australia (1), Mexico (3), and the United States (2). To our knowledge, this is the first report of E. heraclei infection on carrot in central China, a major region of carrot production, although the disease has previously been observed in northwestern China (4). Further research should help to reduce losses in carrot crops caused by E. heraclei in central China. References: (1) J. H. Cunnington et al. Australas. Plant Dis. Notes 3:38, 2008. (2) D. A. Glawe et al. Plant Health Progress doi: 10.1094/PHP-2005-0114-01-HN, 2005. (3) G. Rodríguez-Alvarado et al. Plant Dis. 94:483, 2010. (4) R. Zheng and G. Chen. Pp. 97-99 in: Flora Fungorum Sinicorum Vol. 1. Erysiphales. R. Zheng et al., eds. Science Press, Beijing, 1987.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Plant Disease ◽  
2020 ◽  
Author(s):  
Fangmin Hao ◽  
Quanyu Zang ◽  
Weihong Ding ◽  
Erlei Ma ◽  
Yunping Huang ◽  
...  

Melon (Cucumis melo L.) is a member of the Cucurbitaceae family, an important economical and horticultural crop, which is widely grown in China. In May 2020, fruit rot disease with water-soaked lesions and pink molds on cantaloupe melons was observed in several greenhouses with 50% disease incidence in Ningbo, Zhejiang Province in China. In order to know the causal agent, diseased fruits were cut into pieces, surface sterilized for 1 min with 1% sodium hypochlorite (NaClO), 2 min with 75% ethyl alcohol, rinsed in sterile distilled water three times (Zhou et al. 2018), and then placed on potato dextrose agar (PDA) medium amended with streptomycin sulfate (100 μg/ml) plates at 25°C for 4 days. The growing hyphae were transferred to new PDA plates using the hyphal tip method, putative Fusarium colonies were purified by single-sporing. Twenty-five fungal isolates were obtained and formed red colonies with white aerial mycelia at 25°C for 7 days, which were identified as Fusarium isolates based on the morphological characteristics and microscopic examination. The average radial mycelial growth rate of Fusarium isolate Fa-25 was 11.44 mm/day at 25°C in the dark on PDA. Macroconidia were stout with curved apical and basal cells, usually with 4 to 6 septa, and 29.5 to 44.2 × 3.7 to 5.2 μm on Spezieller Nährstoffarmer agar (SNA) medium at 25°C for 10 days (Leslie and Summerell 2006). To identify the species, the internal transcribed spacer (ITS) region and translational elongation factor 1-alpha (TEF1-α) gene of the isolates were amplified and cloned. ITS and TEF1-α was amplified using primers ITS1/ITS4 and EF1/EF2 (O’Donnell et al. 1998), respectively. Sequences of ITS (545 bp, GenBank Accession No. MT811812) and TEF1-α (707 bp, GenBank Acc. No. MT856659) for isolate Fa-25 were 100% and 99.72% identical to those of F. asiaticum strains MSBL-4 (ITS, GenBank Acc. MT322117.1) and Daya350-3 (TEF1-α, GenBank Acc. KT380124.1) in GenBank, respectively. A phylogenetic tree was established based on the TEF1-α sequences of Fa-25 and other Fusarium spp., and Fa-25 was clustered with F. asiaticum. Thus, both morphological and molecular characterizations supported the isolate as F. asiaticum. To confirm the pathogenicity, mycelium agar plugs (6 mm in diameter) removed from the colony margin of a 2-day-old culture of strain Fa-25 were used to inoculate melon fruits. Before inoculation, healthy melon fruits were selected, soaked in 2% NaClO solution for 2 min, and washed in sterile water. After wounding the melon fruits with a sterile needle, the fruits were inoculated by placing mycelium agar plugs on the wounds, and mock inoculation with mycelium-free PDA plugs was used as control. Five fruits were used in each treatment. The inoculated and mock-inoculated fruits were incubated at 25°C with high relative humidity. Symptoms were observed on all inoculated melon fruits 10 days post inoculation, which were similar to those naturally infected fruits, whereas the mock-inoculated fruits remained symptomless. The fungus re-isolated from the diseased fruits resembled colony morphology of the original isolate. The experiment was conducted three times and produced the same results. To our knowledge, this is the first report of fruit rot of melon caused by F. asiaticum in China.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1190-1190
Author(s):  
L. X. Zhang ◽  
J. H. Song ◽  
G. J. Tan ◽  
S. S. Li

Curcuma (family Zingiberaceae) is commonly cultivated for the use of rhizomes within traditional Chinese medicines. In October 2009 and 2010, severe leaf blight was observed on Curcuma wenyujin Y.H. Chen & C. Ling (4) in fields located in Ruian, China. The area of cultivation in Ruian encompasses 90% of the production in Zhejiang Province. Disease incidence was approximately 90% of plants observed in affected fields. Early symptoms were yellow-to-brown, irregular-shaped lesions on the leaf margin or tip. After several days, lesions expanded along the mid-vein until the entire leaf was destroyed. Blighted leaves turned grayish to dark brown and withered, and severely affected plants died. Eight fungal isolates were recovered from symptomatic C. wenyujin leaves, collected from eight different fields, on potato dextrose agar (PDA). These fungal colonies were initially white, becoming light to dark gray and produced black, spherical to subspherical, single-celled conidia (14 to 17 × 12 to 15 μm), which were borne on a hyaline vesicle at the tip of the conidiophores. On the basis of these morphological features, the isolates appeared to be similar to Nigrospora sphaerica (2). Strain ZJW-1 was selected as a representative for molecular identification. Genomic DNA was extracted from the isolate, and the internal transcribed spacer (ITS) region of the ribosomal DNA (ITS1-5.8S-ITS2) was amplified using ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) primers (3). The ITS region was further cloned and sequenced (GenBank Accession No. JF738028) and was 99% identical to N. sphaerica (GenBank Accession No. FJ478134.1). On the basis of morphological data and the ITS rDNA sequence, the isolate was determined to be N. sphaerica. Pathogenicity tests were conducted on four leaves of four C. wenyujin plants by placing agar pieces (5 mm in diameter) from 8-day-old cultures on pushpin-wounded leaves. An equal number of control plants were wounded and inoculated with noncolonized PDA agar pieces. Plants were placed in moist chambers at 25°C with a 12-h photoperiod. Brown-to-black lesions were observed on wounded leaves after 3 days and expanded to an average of 56 × 40 mm 15 days after inoculation. No symptoms developed on the control leaves. The pathogen was reisolated from the margins of necrotic tissues but not from the controls. The pathogen has been reported as a leaf pathogen on several hosts worldwide (1). To our knowledge, this is the first report of N. sphaerica as a leaf pathogen of C. wenyujin in China. Future research will focus primarily on management of this disease. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, USDA-ARS, Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , March 31, 2011. (2) E. W. Mason. Trans. Brit. Mycol. Soc. 12:152, 1927. (3) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (4) J. Zhao et al. Molecules 15:7547, 2010.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1011-1011 ◽  
Author(s):  
Z. Y. Cai ◽  
Y. X. Liu ◽  
G. X. Huang ◽  
M. Zhou ◽  
G. Z. Jiang ◽  
...  

Rubber tree (Hevea brasiliensis Muell. Arg.) is an important industrial crop of tropical areas for natural rubber production. In October 2013, foliar spots (0.1 to 0.4 mm in diameter), black surrounded by a yellow halo, and with lesions slightly sunken were observed on the rubber tree leaf in a growing area in Heikou County of Yunnan Province. Lesion tissues removed from the border between symptomatic and healthy tissue were surface sterilized in 75% ethanol and air-dried, plated on PDA plates, and incubated at 28°C with alternating day/night cycles of light. The pathogen was observed growing out of many of the leaf pieces, and produced abundant conidia. Colonies 6.1 cm in diameter developed on potato carrot agar (PCA) after 7 days, with well-defined concentric rings of growth. Colonies on PCA were composed of fine, dark, radiating, surface and subsurface hyphae. Conidia produced in PCA culture were mostly solitary or in short chains of 2 to 5 spores, long ovoid to clavate, and light brown, 40 to 81.25 × 8 to 20 μm (200 colonies were measured), with 3 to 6 transverse septa and 0 to 2 longitudinal or oblique septa. Morphological characteristics were similar to those described for Alternaria heveae (3,4). A disease of rubber tree caused by Alternaria sp. had been reported in Mexico in 1947 (2). DNA of Ah01HK13 isolate was extracted for PCR and sequencing of the ITS region with ITS1 and ITS4 primers was completed. From the BLAST analysis, the sequence of Ah01HK13 (GenBank Accession No. KF953884), had 97% similarity to A. dauci, 96% identical to A. macrospora (AY154701.1 and DQ156342.1, respectively), indicating the pathogen belonged to Alternaria genus. According to morphological characteristics, this pathogen was identified as A. heveae. Pathogenicity of representative isolate, Ah01HK13 was confirmed using a field rubber tree inoculation method. Three rubber plants (the clone of rubber tree Yunyan77-4) were grown to the copper-colored leaf stage and inoculated by spraying spore suspension (concentration = 104 conidia/ml) to the copper-colored leaves until drops were equally distributed on it using manual pressure sprayer. Three rubber plants sprayed with sterile distilled water were used as controls. After inoculation, the plants were covered with plastic bags. The plastic bags were removed after 2 days post-inoculation (dpi) and monitored daily for symptom development (1). The experiment was repeated three times. The typical 0.1 to 0.4 mm black leaf spots were observed 7 dpi. No symptoms were observed on control plants. A fungus with the same colony and conidial morphology as A. heveae were re-isolated from leaf lesions on inoculated rubber plants, but not from asymptomatic leaves of control plants, fulfilling Koch's postulates. Based on these results, the disease was identified as black spot of rubber tree caused by A. heveae. To our knowledge, this is the first report of A. heveae on rubber tree in China. References: (1) Z. Y. Cai et al. Microbiol Res. 168:340, 2013. (2) W. J. Martin. Plant Dis. Rep. 31:155, 1947. (3) E. G. Simmons. Mycotaxon 50:262, 1994. (4) T. Y. Zhang. Page 111 in: Flora Fungorum Sinicorum: Alternaria, Science Press, Beijing, 2003.


Plant Disease ◽  
2013 ◽  
Vol 97 (11) ◽  
pp. 1513-1513 ◽  
Author(s):  
D. Ezra ◽  
O. Liarzi ◽  
T. Gat ◽  
M. Hershcovich ◽  
M. Dudai

Pitahaya (Hylocereus undatus [Haw.] Britton & Rose) was introduced to Israel in 1994, and is grown throughout the country. In the summer of 2009, fruit with internal black rot was collected from a field in central Israel. Symptomatic tissue from the black rot was placed on potato dextrose agar (PDA) plates amended with 12 μg/ml tetracycline and incubated at 25°C for 3 days. A dark, gray to black, fast-growing fungus was isolated from all samples (10 fruits). For identification, single-spore cultures were grown on PDA at 25°C for 5 days, and colonies with gray to black, wooly mycelium were formed. The mycelia were branched and septate (4 to 8 μm wide). The arthroconidia were dark brown, thick-walled, and one-celled, 6.3 to 14.2 × 2.0 to 4.5 μm (n = 5), and ovate to rectangular. Based on these characteristics, the fungus was identified as Neoscytalidium dimidiatum (Penz.) Crous & Slippers (1). The internal transcribed spacer (ITS) region of rDNA and β-tubulin gene were amplified using ITS1 and ITS4, T121 (2), and Bt1b (3) primers, respectively, and then sequenced (GenBank Accessions KF000372 and KF020895, respectively). Both sequences were identical to sequences previously deposited in GenBank. The ITS (561 bp) and β-tubulin (488 bp) sequences exhibited 99% and 100% identity, and 100% and 84% coverage, respectively, to N. dimidiatum (JX524168 and FM211185, respectively). Thus, the results of the molecular identifications confirmed the morphological characterization. To establish fungal pathogenicity and the mechanism of infection, 60 flowers in a disease-free orchard were marked to form three different treatments (15 flowers per treatment): inoculations of the flower tube by inserting PDA plugs (0.5 × 0.5 cm) from a 5-day-old culture to the base of the flower, inoculations of the flower stigma by placing the fungus plug on intact, or pre-wounded flower stigma. The wounds were made by scratching the stigma with a sterile scalpel. For each treatment, five additional flowers were used as negative controls in which the PDA plugs did not contain any fungus. All flowers were hand-pollinated and left to grow for a month until the fruit had ripened. Only flowers inoculated by insertion of the fungus into the flower tube developed black rot in the fruit (8 of 15 fruit) 3 to 4 weeks post inoculation, suggesting involvement of the flower tube in the mechanism of infection. All other treatments and controls failed to develop any detectable disease symptoms. N. dimidiatum was reisolated from the rot, fulfilling Koch's postulates. Flowers with wounded stigma developed significantly smaller fruit. Interestingly, diseased fruit changed color about a week before ripening from the flower opening downwards, whereas healthy fruit changed color from the attachment point to the stem upwards. These results indicate that N. dimidiatum is the pathogen of pitahaya internal black rot disease. Recently, this pathogen was reported to cause brown spot disease and stem canker disease of pitahaya in China (4) and Taiwan (5), respectively. To date, the disease can be detected in all orchards in Israel, with up to 50% of the fruit being infected. Since the disease symptoms of the Israeli isolate are located in the fruit, the commercial loss due to pathogen attack is significant. To our knowledge, this is the first report of internal black rot caused by N. dimidiatum on pitahaya fruit in Israel.References: (1) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (2) K. O'Donnell and E. Cigelnik. Mol. Phylo, Evol. 7:103, 1997. (3) N. L. Glass and G. C. Donaldson. Appl. Environ. Microiol. 61:1323, 1995. (4) G. B. Lan and Z. F. He. Plant Dis. 96:1702, 2012. (5) M. F. Chuang et al. Plant Dis. 96:906, 2012.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1005-1005 ◽  
Author(s):  
Y. Rivera ◽  
K. Rane ◽  
J. A. Crouch

The North American perennial black-eyed Susan (Rudbeckia fulgida cv. Goldsturm) is an important nursery crop, prized by gardeners and landscapers for its persistent bloom and ease of cultivation. In September 2013, disease symptoms characteristic of downy mildew were observed from multiple R. fulgida plants at two commercial nurseries in the Maryland counties of Howard and Anne Arundel. Over 100 R. fulgida were affected by this disease in both nurseries, rendering the plants unmarketable and causing a substantial financial loss. Plants exhibited dark necrotic lesions on the adaxial leaf surface, and sporulating masses of white mycelium on the abaxial leaf surface and on the adaxial in extreme infections. Plants were stunted with a reduced number of blooms. Microscopic visualization showed coenocytic mycelium, hyaline sporangiophores (length 261 to 904 μm; [Formula: see text] = 557 μm; n = 20) that were straight and monopodially branched at right angles with several terminal branchlets. Sporangia were hyaline, ovoid to elliptical with smooth surfaces ([Formula: see text] = 31 × 28 μm; n = 50). Based on morphological data, the organism was identified as Plasmopara halstedii (Farl.) Berl. & De Toni in Sacc (2). Voucher specimens were deposited in the U.S. National Fungus Collections (BPI 892792 to 892794). Molecular identification was conducted by extracting genomic DNA from sporangiophores and mycelium tweezed from the surface of three infected plants, with extractions performed using the QIAGEN Plant DNA kit (QIAGEN, Gaithersburg, MD). The large subunit of the nuclear rDNA was amplified by PCR using primers LROR and LR7 (3) and sequenced bidirectionally. BLASTn searches of NCBI GenBank showed that the resultant rDNA sequences (accessions KF927152 to KF927154) shared 99% nucleotide identity with curated P. halstedii sequences, consistent with morphological identification. To confirm pathogenicity, three 3.78-liter (1 gallon) containerized R. fulgida cv. Goldsturm plants were inoculated with a sporangial suspension of 2.4 × 104 sporangia/ml and sprayed until both the upper and lower surface of the leaves were completely covered. One negative control plant was sprayed with deionized water. Plants were placed in clear plastic bags in a growth chamber (20°C, 12-h photoperiod). Disease symptoms were observed 3 days post inoculation on all plants. The control plant was symptomless. Morphological features of the pathogen on the surface of inoculated plants were identical to those observed from the original infected plants. Although P. halstedii on R. fulgida cv. Goldsturm has been previously reported in Virginia in 2006 and Florida in 2004, to our knowledge, this is the first report on R. fulgida cv. Goldsturm in Maryland (1). Black-eyed Susans are widely distributed throughout Maryland's landscape and are a staple plant for gardeners, nurserymen and landscape professionals. Given the destructive nature of this disease, downy mildew has the potential to cause considerable economic losses to the state's ornamental crop industry. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , November 18, 2013. (2) P. A. Saccardo. Syllogue Fungorum 7:242, 1888. (3) R. Vilgalys and M. Hester. J. Bacteriol. 172:4238, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Heonil Kang ◽  
Jongmin Seo ◽  
Hyoung-Rai Ko ◽  
Sohee Park ◽  
Nam-Sook Park ◽  
...  

Meloidogyne mali was originally described in Japan on roots of an apple rootstock (Malus prunifolia) (Itoh et al. 1969) and found on elm trees in Italy, Netherlands, Belgium, France and United Kingdom, and euonymus in the USA (EPPO 2018; Prior et al. 2019). In Italy, the nematode was initially described as a new species, Meloidogyne ulmi, but was later synonymized with M. mali (Ahmad et al., 2013). During the study of Meloidogyne species in Republic of Korea, galled roots were found on Acer palmatum collected in Naejangsan National Park, Republic of Korea located at 35°29'29.1"N, 126°55'42.7"E, altitude 147.8 m. Morphologically, the perineal patterns of the females was very similar to M. mali due to rounded dorsal arch and smooth, finely-spaced, indistinct striae. Lateral field shallow, narrow, and faint. Phasmids large, very distinct. Head region of second–stage juveniles flattened anteriorly to hemispherical, slightly set-off from body, without annulations, low head cap. Stylet slender, sharply pointed cone, cylindrical shaft with rounded knob sloping posteriorly. Tail conoid with irregular, and rounded end. Rectum undilated. Several micrographs were made from 25 J2s and females for mean, standard deviation and range. J2s were measured with a body length: 408.2 ± 25.1 (366-449) µm, maximum body width: 15.9 ± 1.0 (14.1-17.9) µm, stylet length: 14.1 ± 0.5 (13.1-15.3) µm, hyaline tail terminus: 10.0 ± 0.9 (8.3-11.0) µm and tail length: 31.7 ± 3.0 (26.0-36.1) µm. Females (n=25) were characterized by a body length: 656.7 ± 102.7 (516-947) µm, a stylet length: 16.4 ± 2.2 (13.9-19.0) µm, a vulval slit length: 22.2 ± 1.8 (19.8-25.7) µm, and a vulva-anal distance: 20.2 ± 2.4 (17.1-25.4) µm. Morphological measurements and configuration of perineal patterns (Fig. 1S) were comparable to M. mali (Itoh et al. 1969; Ahmed et al. 2013; Gu et al. 2020). To confirm pathogenicity, a modified version of Koch’s postulates was conducted in the greenhouse by inoculating 300 eggs from a single egg mass onto each of three, two-year-old A. palmatum plants, grown in sterilized sandy soil. After about one year, symptoms developed on the maple tree roots, with numerous galls containing females and egg masses by visual inspection. In addition, PCR was performed for the 28S rDNA D2-D3 segment and ITS region using the primers D2A, D3B, TW81 and AB28. The resulting sequences (MW522548, MW522549, MW523004 and MW523005) were at least 99% identical to other 28S rDNA D2-D3 segment and ITS region sequences on Genbank (MT406757 and JX978229). The molecular phylogenetic relationships of this species strongly supports M. mali (Fig. 2S). To the best of our knowledge, this is the first report of M. mali in Republic of Korea. The host range of M. mali includes many species which are of economic importance in fruit trees (e.g. apple, chestnut, fig, mulberry), forestry trees (e.g. elm, maple, oak, Yew), and vegetable crops (e.g. cabbage, carrot, cucumber, eggplant, soybean, watermelon). The potential danger to these economically important plants caused M. mali to be added the EPPO Alert List and also the Quarantine List of the Korean Animal and Plant Quarantine Agency. Additionally, in our survey around the Naejangsan National Park, M. mali was not found on other economically important host crops, such as grapes. Although this nematode was not detected other crops, it requires regular monitoring because it poses a serious threat to the future production of these crops.


Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2153-2153 ◽  
Author(s):  
Z. Q. Song ◽  
D. Y. Zhang ◽  
Y. Liu ◽  
F. X. Cheng

Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1691-1691
Author(s):  
M. Zhang ◽  
H. Y. Wu ◽  
Y. H. Geng ◽  
S. Q. Yu

Tree peony (Paeonia suffruticosa) is regarded as the national flower of China and is cultivated throughout the country. In early August 2010, a moderately severe leaf spot was observed on tree peony cultivated in a garden of Zhengzhou, Henan Province, where approximately 15% of trees were diseased. In 2011, a less damaging leaf spot was also observed in another area of the city with approximately 10% of trees diseased. Early symptoms appeared as small, round, pale-brown lesions on the leaves. Lesions expanded into 5- to 20-mm-diameter spots that were elliptical or irregular, brown to dark brown. A fungus was consistently isolated from the leaf spots on potato dextrose agar (PDA) in grey-black colonies, but produced few pycnidia. Black pycnidia were ostiolate, globose, papillate, formed in uniloculate or multiloculate stromata that were immersed in the leaf, and became erumpent at maturity. Conidiophores or conidiogenous cells were hyaline and cylindrical. Conidia were hyaline, granular, fusoid to ellipsoid, aseptate, with a sub-truncate base, and 20 to 28 × 4.5 to 7.5 μm (mean dimensions of 50 conidia: 24.5 × 5.2 μm). The pathogen was identified as Fusicoccum aesculi, anamorphic stage of Botryosphaeria dothidea, on the basis of morphology (2). The identity of the fungus was confirmed to be F. aesculi by DNA sequence analysis of the internal transcribed spacer (ITS) region (GenBank Accession No. JQ323001), which was 100% identical to those of other F. aesculi isolates (GenBank Accession Nos. GU997686.1 and GU723469.1) (1). Pathogenicity tests were done by inoculating each of 10 leaves on one 7-year-old tree with a mycelial plug (0.5 cm diameter) harvested from the periphery of a 7-day-old colony. An equal number of leaves on the same tree, serving as controls, were mock-inoculated with plugs of PDA medium. Inoculated leaves were covered with plastic for 24 h to maintain high relative humidity and incubated at about 25°C. The plugs were removed after 48 h. After 7 days, 80% of the inoculated leaves showed symptoms identical to those observed in the field under natural conditions, whereas controls remained symptom-free. Reisolation of the fungus from lesions on inoculated leaves confirmed that the causal agent was F. aesculi. Pathogenicity tests were repeated on the other two trees by the same methods with the same results. To our knowledge, this is the first report of F. aesculi infecting P. suffruticosa in China. References: (1) S. Mohali et al. Mycol. Res. 110:405, 2006. (2) B. C. Sutton. The Coelomycetes. CABI Publishing, New York, 1980.


Sign in / Sign up

Export Citation Format

Share Document