scholarly journals Isolate–Cultivar Interactions, In Vitro Growth, and Fungicide Sensitivity of Fusarium oxysporum Isolates Causing Seedling Disease on Soybean

Plant Disease ◽  
2018 ◽  
Vol 102 (10) ◽  
pp. 1928-1937 ◽  
Author(s):  
D. R. Cruz Jimenez ◽  
M. L. Ellis ◽  
G. P. Munkvold ◽  
L. F. S. Leandro

Fusarium oxysporum is frequently associated with soybean root rot in the United States. Information about pathogenicity and other phenotypic characteristics of F. oxysporum populations is limited. The objective of the research described herein was to assess phenotypic characteristics of F. oxysporum isolates from soybean, including the interaction between isolates and soybean cultivars, fungal growth characteristics in culture, and sensitivity to fungicides commonly used as seed treatment products. The pathogenicity of 14 isolates was evaluated in rolled-towel and Petri-dish assays using 11 soybean cultivars. In the rolled-towel assay, seed were inoculated with a conidial suspension and disease severity was observed. In the Petri-dish assay, F. oxysporum isolates were grown on 2% water agar and seed were placed on the F. oxysporum colony to observe the symptoms that developed. Cultivars differed in susceptibility to F. oxysporum, and significant (P = 0.0140) isolate–cultivar interactions were observed. F. oxysporum isolates differed in radial growth on potato dextrose agar at 25°C. Pyraclostrobin and trifloxystrobin reduced conidial germination with average 50% effective concentration (EC50) of 0.15 and 0.20 µg active ingredient (a.i.)/ml, respectively. Ipconazole reduced fungal growth with average EC50 of 0.23 µg a.i./ml, whereas fludioxonil was ineffective. Our results illustrate soybean F. oxysporum isolate variability and the potential for their management through cultivar selection or seed treatment.

Plant Disease ◽  
2019 ◽  
Vol 103 (12) ◽  
pp. 3234-3243
Author(s):  
David R. Cruz ◽  
Leonor F. S. Leandro ◽  
Gary P. Munkvold

Fusarium oxysporum (Fo) is an important pathogen that reduces soybean yield by causing seedling disease and root rot. This study assessed the effects of pH and temperature on Fo fungal growth and seedling disease. In an in vitro assay, 14 Fo isolates collected from symptomatic soybean roots across Iowa in 2007 were grown on artificial culture media at five pH levels (4, 5, 6, 7, and 8) and incubated at four temperatures (15, 20, 25, or 30°C). In a rolled-towel assay, soybean seeds from Fo-susceptible cultivar Jack were inoculated with a suspension of a pathogenic or a nonpathogenic Fo isolate; both isolates were previously designated for their relative aggressiveness in causing root rot at 25°C. The seeds were placed in rolled germination paper, and the rolls were incubated in all combinations of buffer solutions at four pH levels (4, 5, 6, and 7), and four temperatures (15, 20, 25, or 30°C). There was a significant interaction between temperature and pH (P < 0.05) for in vitro radial growth and root rot severity. Isolates showed the most in vitro radial growth after incubation at pH 6 and 25°C. For the rolled-towel assay, the pathogenic isolate caused the most severe root rot at pH 6 and 30°C. Gaussian regression analysis estimates for optimal conditions were pH 6.3 at 27.1°C for maximal fungal growth and pH 5.9 at 30°C for maximal root rot severity. These results indicate that optimal pH and temperature conditions are similar for Fo growth and disease in soybean seedlings and suggest that Fo may be a more important seedling pathogen when soybeans are planted under warm conditions in moderately acidic soils.


1968 ◽  
Vol 42 (1-2) ◽  
pp. 193-198
Author(s):  
Paul Whur

A new method is described for the in vitro culture of the preparasitic stages of Nippostrongylus brasiliensis. It utilises the plating of faecal suspensions on to paper chromatography strips supported on non-porous Perspex slabs and has been designed primarily to facilitate savings in the time required for routine culture maintenance without lowering the quantity or quality of the larval yield. Comparison with the filter paper/Petri dish method shows an increase in larval yield of 85% and a reduction in time required for culture of 72%. Total inhibition of fungal growth on incubated faeces suspensions was obtained by the addition of “Mycostatin” (Squibb) in a concentration of 62 units per ml. or more.


2018 ◽  
Vol 30 (1) ◽  
pp. 75 ◽  
Author(s):  
Gul B. Poussio ◽  
Manzoor A. Abro ◽  
Jamal U. D. Hajano ◽  
Muhammad I. Khaskheli ◽  
Khalid I. Rajput ◽  
...  

Fusarium oxysporum f.sp. lycopersici (FOL) is a highly destructive fungal pathogen of tomato crop causing wilt disease which may reduce 10 to 90% yield. In Pakistan, tomato is widely grown in Sindh province, major territories are district Hyderabad, Tando Allahyar and Mirpurkhas. Thus, surveys of these territories were conducted to record intensity of the disease and confirm etiology. Furthermore, potential of different botanical pesticides and commercially available fungicides were tested to inhibit mycelial growth of the causal fungus. The experiment was laid down with complete randomized block design with three replications. The results showed that the disease was occurring in all locations with the range of 8-47 % incidence. F. oxysporum f.sp. lycopersici was predominantly isolated from the collected disease sample during survey and pathogenic nature of the fungus was tested on the tomato Golo variety through soil drenching method. The disease incidence of 30 and 42 % (72 % as total) was recorded in inoculated tomato plants at 20 and 40 DAI, respectively. Maximum (67 %) inhibition of the fungal growth was found by neem seed extracts at higher dose of 8 % concentration followed by 63 % with neem seeds and Eucalyptus at 6 and 8 %, respectively. Alternatively, the Nativo 75 WG fungicide was found most effective in reducing the redial mycelial growth of target fungus followed by Topsin-M at 1000 ppm where as Aliette and Melodedue fungicides were found least effective under in-vitro conditions.


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2263-2270 ◽  
Author(s):  
N. Rosenzweig ◽  
L. E. Hanson ◽  
S. Mambetova ◽  
Q. W. Jiang ◽  
C. Guza ◽  
...  

Alternaria leaf spot (ALS), caused by Alternaria spp., can occur wherever sugarbeet is grown. Infection by Alternaria spp. and disease management has historically been considered a minor issue in sugarbeet production in the United States. An increase of both incidence and severity in 2016 of ALS high enough to cause yield loss has been observed in Michigan. With a renewed need to consider potential management of this disease, the sensitivity was determined for populations of Alternaria spp. to three classes of fungicides currently labeled for management of leaf spot on sugarbeet, including demethylase inhibitor (DMI), quinone outside inhibitor (QoI), and organo-tin fungicides. Leaves with symptoms of ALS were sampled from sugarbeet fields in east-central Michigan and southwestern Ontario, Canada. Monoconidial isolates were obtained to determine sensitivity to each fungicide class above. A spiral gradient dilution method was used to estimate the fungicide effective concentration (in milligrams per liter) that caused a 50% inhibition of fungal growth in vitro for all isolates. Significant temporal shifts were detected in the frequencies of sensitivity phenotypes to DMI and QoI but not organo-tin fungicides from 2016 through 2017. Individual isolates of Alternaria spp. were recovered with cross-resistance to DMI and multiple resistance to DMI, QoI, and triphenyltin hydroxide fungicides. To our knowledge, this is the first report of a fungus other than Cercospora beticola with resistance to organo-tin fungicides. Fungicide sensitivity monitoring indicates that an effective integrated disease management approach combining fungicide efficacy trials and monitoring pathogen biology is essential for developing effective resistance management recommendations.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1435-1435 ◽  
Author(s):  
T. Lomas-Cano ◽  
D. Palmero-Llamas ◽  
M. de Cara ◽  
C. García-Rodríguez ◽  
A. Boix-Ruiz ◽  
...  

In March of 2013, new symptoms were observed in more than seven million nursery-grown sweet pepper (Capsicum annuum) plants in El Ejido, Almería (southern Spain). Symptoms included wilting without yellowing of leaves and stunting of plants. Plant crowns exhibited necrosis that advanced through the main root along with slight root rot. Xylem was not affected above or below the crown. Symptoms were thought to be caused by the well-known pepper pathogen Phytophthora capsici. However, sporodochia of Fusarium oxysporum were observed on plant crowns. Symptomatic seedlings (n = 200) were sampled and analyzed. Tissue from roots and epidermal crowns were plated on PDA, PARP, and Komada media, as well as stem discs on PDA and Komada. No Phytophthora sp. were observed and F. oxyporum was exclusively isolated from all 200 samples, from roots and crowns, but not from xylem. Pathogenicity of 60 of these F. oxysporum isolates was studied by inoculation onto sweet pepper plants (cv. del Piquillo) at the 2-true-leaf stage. Twelve plants per isolate, grown on autoclaved vermiculite, were inoculated by drenching with 20 ml of a conidial suspension (1 × 105 CFU/ml) of each isolate per plant. Each suspension was obtained by blending one PDA petri dish fully covered with one isolate. Non-inoculated plants served as control. Plants were maintained for 30 days in a growth chamber with a 14-h photoperiod (1.6 ×·104 lux) and temperatures at 23 to 26°C. The assay was conducted twice. Symptoms described above were reproduced on crown and roots of the inoculated plants with no symptoms in stem discs. No symptoms were observed on controls after 48 days. Host specificity was tested for 13 isolates to tomato (Solanum lycopersicum) cv. San Pedro, eggplant (S. melongena) cv. Alegria, cucumber (Cucumis sativus) cv. Marketmore, watermelon (Citrullus lanatus) cv. Sugar Baby, and Chinese cabbage (Brassica campestris subsp. condensa) cv. Kasumi (4). These plants were inoculated as previously described for pathogenicity tests (12 plants per species, repeated twice). None of the plants exhibited the characteristic symptoms after 60 days. Five isolates of F. oxysporum f. sp. radicis-cucumerinum and four isolates of F. o. f. sp radicis-lycopersici were also inoculated without any symptoms in any of the inoculated sweet pepper plants. Morphological identity of all isolates corresponded to F. oxysporum. The fungi were identified following the morphological keys and methodology provided by (1) and (2). Three isolates from the 60 tested were selected for molecular identification. Molecular identification was performed by sequencing partial TEF-1α gene (3). Subsequent database searches by BLASTn indicated that the resulting sequence of 659-bp had 100% identity with the corresponding gene sequence of F. oxysporum. The sequences were identical for the three isolates and were deposited on the EMBL Sequence Database (HG916993, HG916994, and HG916995). Results suggest that the pathogenic ability of the isolates varies from a vascular Fusarium wilt. F. oxysporum f. sp. capsici is a reported pathogen to sweet pepper (5), but the symptoms we have found are closer to those manifested by the formae speciales that causes root and crown rot of other plants. Consistent with the convention stablished for similar diseases we propose the name F. oxysporum f. sp. radicis-capsici f. sp. nov. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell, Ames, IA, 2006. (2) P. E. Nelson et al. Fusarium species. An Ilustrated Manual for Identification. The Penn St. University Press, 1983. (3) K. O'Donnell et al. Proc. Nat. Acad. Sci. 95:2044, 1998.(4) L. M. Oelke and P. W. Bosland. Capsicum Eggplant Newsl. 20:86, 2001. (5) V. C. Rivelli. M.S. Thesis. Dep. Plant Pathol. and Crop Phys. Louisiana State Univ., Baton Rouge, 1989.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 877-877
Author(s):  
A. Garibaldi ◽  
P. Pensa ◽  
D. Bertetti ◽  
A. Poli ◽  
M. L. Gullino

During the summer of 2010, 20% of 7,000 4-month-old plants of apple cactus (Cereus peruvianus monstruosus) showed symptoms of a basal stem rot in a commercial nursery located in Liguria (northern Italy). Affected plants showed yellow orange-to-pale brown color from the crown level to the stem apex and a water-soaked rot was observed on the stem starting from the base. Brown discoloration was observed in the vascular system. Eventually stems bent, plants collapsed and died, and affected tissues dried out. A Fusarium sp. was consistently and readily isolated from symptomatic tissue on Komada selective medium. Isolates were purified and subcultured on potato dextrose agar (PDA). Single-spore cultures on PDA, Spezieller Nährstoffarmer agar (SNA) (3), and carnation leaf-piece agar (CLA) (2) were incubated at 26 ± 1°C (12-h fluorescent light, 12-h dark). On PDA, cultures produced a thick growth of white-to-pink mycelium and pale pink pigments in the agar. On SNA, cultures produced short monophialides with unicellular, ovoid-elliptical microconidia measuring 4.3 to 8.2 × 2.3 to 3.8 (average 6.0 × 2.8) μm. Chlamydospores were abundant, single or paired, terminal and intercalary, rough walled, and 6 to 8 μm in diameter. On CLA, cultures produced orange sporodochia with macroconidia that were 3 to 4 septate, nearly straight with a foot-shaped basal cell and a short apical cell, and measured 31.1 to 51.5 × 4.4 to 3.5 (average 43.2 × 3.8) μm. Such characteristics are typical of Fusarium oxysporum (3). Amplification of the ITS (internal transcribed spacer) of the rDNA using primers ITS1/ITS4 (4) yielded a 498-bp band. Sequencing and BLASTn analysis of this band showed an E-value of 0.0 with F. oxysporum. The nucleotide sequence has been assigned GenBank Accession No. JF422071. To confirm pathogenicity, five 6-month-old healthy plants of C. peruvianus monstruosus were inoculated by dipping roots in a conidial suspension (2.4 × 106 CFU/ml) of F. oxysporum isolated from affected plants. Inoculum was obtained from pure cultures of three single-spore isolates grown for 10 days on casein hydrolysate liquid medium. Roots were not wounded before the inoculation. Plants were transplanted into pots filled with steam-sterilized substrate (sphagnum peat/perlite/pine bark/clay 50:20:20:10). Five noninoculated plants served as a control. Plants were placed in a climatic chamber at 25 ± 1°C (12-h fluorescent light, 12 h-dark). Basal stem rot and vascular discoloration in the crown and stem developed within 30 days on each inoculated plant. Noninoculated plants remained healthy. F. oxysporum was consistently isolated from symptomatic plants. The pathogenicity test was conducted twice. F. oxysporum has been reported on Cereus spp. in the United States (1). To our knowledge, this is the first report of F. oxysporum on C. peruvianus monstruosus in Italy as well as in Europe. Currently, this disease is present in a few nurseries in Liguria. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (2) N. L. Fisher et al. Phytopathology 72:151, 1982. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell, Ames, IA, 2006. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


2018 ◽  
Vol 35 (1) ◽  
pp. 105-112 ◽  
Author(s):  
N. Dahal ◽  
R. K. Shrestha

Fusarium is a soil borne pathogen which is common in almost all types of soil causing heavy losses in the crop production. Long term survival of pathogen in the soil as chlamydospores has increased its threat making it a highly devastating disease. High accessibility and simple application process of chemical control method has made it an effective and highly adopted approach of eliminating disease causing organisms. The present study was conducted in IAAS, Lamjung Campus to test the efficacy of fungicides in-vitro by poisoned food technique in PDA medium against Fusarium oxysporum f. sp. lentis. The fungicides tested were Carbendazim (50% WP), Chlorothalonil (75% WP) and Dithane M-45 (75% WP) at three different concentrations (100 ppm, 150 ppm and 200 ppm). The treatments were arranged in complete randomized design and replicated five times. The measurement of diameter of the fungal mycelium was taken 8 times at 48 hours interval until the fungus nearly covered the plate in control treatment and inhibition percent of the chemicals were calculated. All the fungicides inhibited the fungal growth significantly, among which carbendazim was highly effective in all the concentrations reducing 100% of mycelial growth followed by chlorothalonil. Dithane M-45 showed least inhibition i.e. 26.62% in 200 ppm (day 13). The chemicals exhibited increased tendency of inhibition with increased concentration.


1997 ◽  
Vol 75 (3) ◽  
pp. 383-393 ◽  
Author(s):  
Wim J. Blok ◽  
Gerrit J. Bollen

The host range of Fusarium oxysporum f.sp. asparagi (Foa) was studied in inoculation experiments with 21 plant species. Typical root rot symptoms were incited only in asparagus, in all experiments; lupin and pea were susceptible under in vitro conditions but showed only mild symptoms occasionally when tested in soil; none of the other species showed external disease symptoms. Root colonization by Foa was studied for 14 plant species. The pathogen was detected in externally disinfested roots of all species except leek and onion, with asparagus the most extensively colonized species. Asparagus was not susceptible to isolates of F. oxysporum f.sp. pisi, lupini, cepae, lilii, and gladioli and Fusarium sacchari var. elongatum. Naturally infested field soil was planted twice for 11 – 13 weeks with 11 plant species, including asparagus and several symptomless hosts, and subsequently with asparagus as a biotest plant. Of these crops, only asparagus greatly increased the severity of Foa root rot. It was concluded that Foa has a narrow host range as a pathogen but a broad host range as a parasite. The consequences of the latter for the epidemiology of Foa are discussed. Twenty-four Foa isolates were assigned to 18 different vegetative compatibility groups (VCGs); three additional F. oxysporum isolates, which were not pathogenic on asparagus, each belonged to a unique VCG. These findings indicate that the Dutch Foa population is very diverse genetically, as was found previously for the Foa population in the United States. Key words: asparagus, Fusarium oxysporum f.sp. asparagi, host range, lupin, pea, symptomless hosts, vegetative compatibility.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 432-432 ◽  
Author(s):  
S. A. Gaetán

Canola (Brassica napus) is a developing oleaginous crop grown commercially in Argentina, primarily in the southeastern region of Buenos Aires Province. Since 2002, plants exhibiting symptoms of wilt and xylem discoloration were observed in canola plants in experimental field plots located at the University of Buenos Aires, Buenos Aires, Argentina. Average disease incidence in 5- to 6-month-old canola cultivars developed in different countries was 18% (range = 9 to 27%). Disease symptoms that included yellowing, wilting, stunting, and necrosis of leaf tissue and suppressed root development appeared in irregular-shaped patches following the rows of plants. The first symptom observed was leaf yellowing followed by an irregular, brown necrosis of the leaf margins. Lesions coalesced to form large necrotic areas that led to severe defoliation beginning with the lower leaves. As the disease developed, a pale brown discoloration girdled the stems that progressed from the basal tissues to the apex. Affected plants were stunted and had small pods with no seeds. Diseased plants eventually collapsed and died. From June to July 2003, six samples consisting of five affected plants per sample were randomly collected from experimental field plots. Pieces (1 cm long) of disease basal stem tissue were thoroughly washed, surface sterilized in 1% sodium hypochlorite for 1 min, rinsed in sterile distilled water, blotted dry on sterile Whatman's filter paper, and incubated on potato dextrose agar in the dark at 26°C for 10 days. Ten resulting colonies were examined microscopically and identified as Fusarium oxysporum Schlechtend.:Fr. f. sp. conglutinans (Wollenweb.) W.C. Snyder & H.N.Hans. (3). Pathogenicity tests for three single-spore isolates of the fungus were performed on 6-week-old canola plants of cvs. Impulse, Master, Mistral, Monty, Rivette, and Trooper. Koch's postulates were completed for each isolate by dipping the roots of seedlings in a conidial suspension (2 times; 105 conidia per ml) for 15 min. Plants were repotted in a sterilized soil mix (soil/sand, 2:1). The experiment, which included five inoculated plants and three noninoculated (roots dipped in sterile distilled water) control plants for each cultivar, was conducted in a greenhouse at 23 to 25°C and 75% relative humidity with no supplemental light. Characteristic symptoms, identical to the original observations, developed within 14 days after inoculation on 100% of the inoculated plants for all three isolates. The pathogen was successfully reisolated from internal diseased stem tissue in all instances. Symptoms included stunted seedlings, leaf necrosis, and external stem discoloration. None of the control plants developed disease. The experiment was repeated once with similar results. F. oxysporum f. sp. conglutinans, which has been reported to cause disease in canola in Canada (1) and the United States (2), represents a serious threat to the main canola cultivars grown in Argentina. To our knowledge, this is the first report of canola wilt incited by F. oxysporum f. sp. conglutinans in Argentina. References: (1) D. Bernard et al. Can. Plant Dis. Surv. 81:102, 2001. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (3) P. E. Nelson et al. Fusarium species. An Illustrated Manual for Identification. Pennsylvania State University Press. University Park, PA, 1983.


Sign in / Sign up

Export Citation Format

Share Document