scholarly journals First Report of Apple Hammerhead Viroid in the United States, Japan, Italy, Spain, and New Zealand

Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2670-2670 ◽  
Author(s):  
S. A. Szostek ◽  
A. A. Wright ◽  
S. J. Harper
Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1115-1115 ◽  
Author(s):  
M. Serdani ◽  
S. Rooney-Latham ◽  
K. M. Wallis ◽  
C. L. Blomquist

Phormium colensoi Hook.f. (syn. P. cookianum), New Zealand flax, (family Xanthorrhoeaceae) is popular in ornamental landscapes in the United States because of its sturdy blade-like foliage available in diverse colors. In February 2012, the Oregon State University Plant Clinic received three potted plants of P. colensoi ‘Black Adder’ from a commercial nursery in Santa Cruz County, California. The margins and midribs of several leaves had brown lesions that were variable in size, and fusiform to ellipsoidal in shape. Embedded in the lesions were black acervuli without setae that exuded salmon-colored spore masses under moist conditions. Conidia were hyaline, cylindrical to fusiform, straight to slightly curved, and 22.4 to 35.2 × 4.0 to 6.4 (average 24.7 × 4.9) μm. Based on morphology, the fungus was confirmed by USDA-APHIS National Identification Services to be Colletotrichum phormii (Henn.) D.F. Farr & Rossman (2). In March 2012, the California Department of Food and Agriculture Plant Pest Diagnostic Lab received additional samples from the same nursery lot (25% disease incidence) from which a similar fungus was recovered. rDNA sequences of the internal transcribed spacer (ITS) region from the California isolate (GenBank KC122681), amplified using primers ITS1 and ITS4 (2), were 100% identical to multiple species of Colletotrichum, including C. phormii by a BLAST query (JQ948446 through JQ948453). ITS sequence similarity alone is not sufficient to address Colletotrichum taxonomy and must be used in combination with host range and morphology (1). Pathogenicity of C. phormii (isolate CDFA986) was tested on three ‘Black Adder’ plants, which were inoculated with 6-mm agar plugs from a 14-day-old culture grown on half strength potato dextrose agar (PDA). Leaves were wound-inoculated along the midrib using colonized plugs (4). Five leaves per plant were inoculated with C. phormii plugs and five leaves per plant were treated with uncolonized PDA agar plugs as controls. Plants were sprayed with water and incubated in plastic bags at 22°C with a 12-h photoperiod. After 48 h, the bags and caps were removed and plants were kept under the same conditions. Two weeks later, water-soaked lesions had developed on the inoculated leaves. Lesions expanded along the midrib and became fusiform in shape after 21 to 28 days. C. phormii was isolated from lesion margins of all the inoculated leaves, but not from control leaves. This experiment was repeated once with similar results. Another Colletotrichum species, C. gloeosporiodes, also occurs on Phormium spp., but differs from C. phormii in morphology and symptom expression. Subsequent nursery and landscape surveys showed that anthracnose caused by C. phormii occurs on several P. colensoi cultivars as well as on P. tenax in five California counties including Santa Cruz, Yolo, Sacramento, San Luis Obispo, and Solano. C. phormii is also reported to infect P. colensoi and P. tenax in New Zealand, Europe, the United Kingdom, Australia, and South Africa (2,3). To our knowledge, this is the first report of C. phormii causing anthracnose on Phormium in North America. This disease could impact the American nursery trade and New Zealand flax production due to crop loss and increased production costs for pest management. References: (1) J. Crouch et al. Mycologia 101:648, 2009. (2) D. F. Farr et al. Mycol. Res. 110:1395, 2006. (3). H. Golzar and C. Wang. Australas. Plant Pathol. 5:110, 2010. (4) L. E. Yakabe et al. Plant Dis. 93:883, 2009.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 108-108 ◽  
Author(s):  
J. A. Abad ◽  
M. Bandla ◽  
R. D. French-Monar ◽  
L. W. Liefting ◽  
G. R. G. Clover

Zebra chip (ZC), an emerging disease causing economic losses to the potato chip industry, has been reported since the early 1990s in Central America and Mexico and in Texas during 2000 (4). ZC was subsequently found in Nebraska, Colorado, New Mexico, Arizona, Nevada, California, and Kansas (3). Severe losses to potato crops were reported in the last few years in Mexico, Guatemala, and Texas (4). Foliar symptoms include purple top, shortened internodes, small leaves, enlargement of the stems, swollen axillary buds, and aerial tubers. Chips made from infected tubers exhibit dark stripes that become markedly more visible upon frying, and hence, are unacceptable to manufacturers. Infected tubers may or may not produce plants when planted. The causal agent of ZC is not known and has been the subject of increased investigation. The pathogen is believed to be transmitted by the potato psyllid, Bactericera cockerelli, and the association of the vector with the disease is well documented (3). Following the report of a potential new liberibacter species in solanaceous crops in New Zealand, we sought to identify this liberibacter species in plants with symptoms of the ZC disease. Six potato plants (cv. Russet Norkota) exhibiting typical ZC symptoms were collected in Olton, TX in June of 2008. DNA was extracted from roots, stems, midribs, and petioles of the infected plants using a FastDNA Spin Kit and the FastPrep Instrument (Qbiogene, Inc., Carlsbad, CA). Negative controls from known healthy potato plants were included. PCR amplification was carried out with ‘Candidatus L. asiaticus’ omp primers (1), 16S rDNA primers specific for ‘Ca. L. asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L. americanus’ (1), and 16S rDNA primers OA2 (GenBank Accession No. EU834130) and OI2c (2). Amplicons from 12 samples were directly sequenced in both orientations (McLab, San Francisco CA). PCR amplifications using species-specific primers for the citrus huanglongbing liberibacter were negative. However, 1.1- and 1.8-kb amplicons were obtained with the OA2/OI2C and omp primers, respectively. The sequences for the rDNA were submitted to NCBI GenBank (Accession Nos. EU884128 and EU884129). BLASTN alignment of the 16S rDNA sequences obtained with primers OA2 and OI2c revealed 99.7% identity with a new species of ‘Ca. Liberibacter’ identified in New Zealand affecting potato (GenBank Accession No. EU849020) and tomato (GenBank Accession No. EU834130), 97% identity with ‘Ca. L. asiaticus’, and 94% with ‘Ca. L. africanus’ and ‘Ca. L. americanus’. The neighbor-joining phylogenetic tree constructed using the 16S rDNA fragments delineated four clusters corresponding to each of the liberibacter species. These results confirm that ‘Ca. Liberibacter’ spp. DNA sequences were obtained from potatoes showing ZC-like symptoms, suggesting that a new species of this genus may be involved in causing ZC disease. To our knowledge, this is the first report of the detection of ‘Ca. Liberibacter’ spp. in potatoes showing ZC disease in the United States. References: (1) C. Bastianel et al. Appl. Environ. Microbiol. 71:6473, 2005. (2) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (3) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007. (4) G. A. Secor and V. V. Rivera-Varas. Rev. Latinoamericana de la Papa (suppl.)1:1, 2004.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 617-617 ◽  
Author(s):  
L. I. Ward ◽  
G. M. Burnip ◽  
L. W. Liefting ◽  
S. J. Harper ◽  
G. R. G. Clover

In February 2009, grapevines (Vitis vinifera) in a commercial vineyard in Auckland were showing shortened, spindly canes with tiny leaves. Approximately 10% of the vines were affected. An RNeasy Plant Mini Kit (Qiagen, Valencia, CA) was used to isolate total RNA from leaves collected from six symptomatic (cvs. BAC0022A and Syrah) and eight symptomless vines (cvs. BAC0022A, Syrah, and Chardonnay). RNA was tested by reverse transcription-PCR for the presence of Australian grapevine viroid, Citrus exocortis viroid, Grapevine yellow speckle viroid 1 (GYSVd-1), Grapevine yellow speckle viroid 2, and Hop stunt viroid (HSVd). Four of the six symptomatic and all the symptomless vines tested positive for GYSVd-1 using primers 5′-TGTGGTTCCTGTGGTTTCAC-3′ and 5′-ACCACAAGCAAGAAGATCCG-3′, which amplify the complete genome (368 bp), and published primers PBCVd100C/194H (3), which amplify a 220-bp region of the genome. Amplicons from each PCR were transformed into a pCR 4-TOPO vector (Invitrogen, Carlsbad, CA), cloned, and sequenced. Sequence from both PCRs aligned identically to generate a consensus sequence (GenBank Accession No. HQ447056), which showed 99% nt identity to GYSVd-1 (GenBank No. X87906) by BLASTN analysis. All symptomatic and symptomless vines also tested positive for HSVd using primers C/H-HSVd (4) and HSVd-C60/H79 (1), which amplify the complete genome (298 bp). Amplicons from each isolate were cloned and sequenced. Sequence from both PCRs were aligned. Clones from all isolates, with the exception of one, aligned identically to create a consensus sequence (GenBank No. HQ447057) that showed 99% nt identity to Chinese HSVd isolates from grapevine (GenBank Nos. DQ371436–59) by BLASTN analysis. Sequence from the remaining isolate (GenBank No. HQ447056) was identical to a German Riesling grape isolate of HSVd (GenBank No. X06873). The presence of each viroid was further confirmed in PCR-positive plants by dot-blot hybridization with digoxigenin-labeled synthetic ssRNA probes specific to the full-length genomes of GYSVd-1 and HSVd (S. Harper and L. Ward, unpublished data). To our knowledge, this is the first report of GYSVd-1 and HSVd in V. vinifera in New Zealand. Since both viroids were detected in symptomatic and symptomless plants, the symptoms observed in the vineyard cannot be attributed to viroid infection. Symptoms described for GYSVd-1 include leaf spots and flecks, but no disease symptoms have been reported in grapes as a result of HSVd (2). Viruses found in the vines include Grapevine leaf roll virus-3, Grapevine viruses A and B, and Rupestris stem pitting associated virus, but these are not thought to be the cause of the symptoms. Two sequence types of HSVd were found, suggesting at least two separate introductions of HSVd into the vineyard. The vineyard is more than 40 years old so both viroids may have been present for some years. Export of wine from New Zealand was worth 1 billion dollars in 2009, so there is potential for these viroids to have an economic impact if symptoms are expressed. HSVd has been reported from China, Europe, Japan, Middle East, Pakistan, and the United States. GYSVd-1 has been reported from Australia, China, East Mediterranean, Europe, Japan, and the United States. References: (1) A. Hadidi et al. Acta Hortic. 309:339, 1992. (2) A. Hadidi et al., eds. Viroids. CSIRO Publishing, Collingwood, Australia, 2003. (3) R. Nakaune and M. Nakano. J. Virol. Methods 134:244, 2006. (4) A. M. Shamoul et al. J. Virol. Methods 105:115, 2002.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 552-552 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
J. M. Crosslin ◽  
G. De la Rosa-Lozano ◽  
A. Sanchez

Zebra Chip (ZC), an emerging disease of potato (Solanum tuberosum L.) first documented in potato fields around Saltillo in México in 1994, has been identified in the southwestern United States, México, and Central America and is causing losses of millions of dollars to the potato industry (4). Recently, this damaging potato disease was also documented in New Zealand (3). This disease is characterized by a striped pattern of necrosis in tubers produced on infected plants, and fried chips processed from these infected tubers are commercially unacceptable (4). Recent studies conducted in the United States and New Zealand have associated ZC with a new species of ‘Candidatus Liberibacter’ vectored by the potato psyllid, Bactericera cockerelli Sulc (1,3,4). A bacterium designated ‘Candidatus Liberibacter psyllaurous’ has recently been identified in potato plants with “psyllid yellows” symptoms that resemble those of ZC (2). To investigate whether liberibacter is associated with ZC in México, 11 potato (cv. Atlantic) tuber samples exhibiting strong ZC symptoms and six asymptomatic tubers were collected from a ZC-affected commercial potato field near Saltillo City, Coahuila, México in September 2008 and tested for this bacterium by PCR. Total DNA was extracted from symptomatic and asymptomatic tubers with cetyltrimethylammoniumbromide (CTAB) buffer (4). DNA samples were tested by PCR using primer pair OA2/OI2c (5′-GCGCTTATTTTTAATAGGAGCGGCA-3′ and 5′-GCCTCGCGACTTCGCAACCCAT-3′, respectively) specific for 16S rDNA and primer pair CL514F/R (5′-CTCTAAGATTTCGGTTGGTT-3′ and 5′-TATATCTATCGTTGCACCAG-3′, respectively) designed from ribosomal protein genes (3). Seven of eleven (63.7%) ZC-symptomatic tubers and one of six (16.7%) asymptomatic potatoes yielded the expected 1,168-bp 16S rDNA and 669-bp CL514F/R amplicons, indicating the presence of liberibacter. Amplicons generated from symptomatic tubers were cloned into pCR2.1-Topo plasmid vectors (Invitrogen, Carlsbad, CA) and one clone of each amplicon was sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST analysis of the ZC OA2/OI2c sequence (GenBank Accession No. FJ498806) showed 100% identity to liberibacter 16S rDNA sequences amplified from potato psyllids from Dalhart, TX and potato tubers from Garden City, KS (GenBank Accession Nos. EU921627 and EU921626, respectively). The ZC CL514F/R sequence (GenBank Accession No. FJ498807) was 98% identical to analogous rplJ and rplL liberibacter ribosomal protein gene sequences amplified from several solanaceous plants in New Zealand (GenBank Accession Nos. EU834131 and EU935005). The OA2/OI2c sequence was also identical to the 16S rDNA sequence (Genbank Accession No. EU812559) of ‘Ca. Liberibacter psyllaurous’ (2). To our knowledge, this is the first report of ‘Ca. Liberibacter psyllaurous’ associated with ZC-affected potatoes in México. References: (1) J. A. Abad et al. Plant Dis. 93:108, 2009. (2) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 92:1474, 2008. (4) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007.


2020 ◽  
Vol 25 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Amaia Del Campo ◽  
Marisalva Fávero

Abstract. During the last decades, several studies have been conducted on the effectiveness of sexual abuse prevention programs implemented in different countries. In this article, we present a review of 70 studies (1981–2017) evaluating prevention programs, conducted mostly in the United States and Canada, although with a considerable presence also in other countries, such as New Zealand and the United Kingdom. The results of these studies, in general, are very promising and encourage us to continue this type of intervention, almost unanimously confirming its effectiveness. Prevention programs encourage children and adolescents to report the abuse experienced and they may help to reduce the trauma of sexual abuse if there are victims among the participants. We also found that some evaluations have not considered the possible negative effects of this type of programs in the event that they are applied inappropriately. Finally, we present some methodological considerations as critical analysis to this type of evaluations.


2020 ◽  
Vol 29 ◽  
Author(s):  
G. Newton-Howes ◽  
M. K. Savage ◽  
R. Arnold ◽  
T. Hasegawa ◽  
V. Staggs ◽  
...  

Abstract Aims The use of mechanical restraint is a challenging area for psychiatry. Although mechanical restraint remains accepted as standard practice in some regions, there are ethical, legal and medical reasons to minimise or abolish its use. These concerns have intensified following the Convention on the Rights of Persons with Disabilities. Despite national policies to reduce use, the reporting of mechanical restraint has been poor, hampering a reasonable understanding of the epidemiology of restraint. This paper aims to develop a consistent measure of mechanical restraint and compare the measure within and across countries in the Pacific Rim. Methods We used the publicly available data from four Pacific Rim countries (Australia, New Zealand, Japan and the United States) to compare and contrast the reported rates of mechanical restraint. Summary measures were computed so as to enable international comparisons. Variation within each jurisdiction was also analysed. Results International rates of mechanical restraint in 2017 varied from 0.03 (New Zealand) to 98.9 (Japan) restraint events per million population per day, a variation greater than 3000-fold. Restraint in Australia (0.17 events per million) and the United States (0.37 events per million) fell between these two extremes. Variation as measured by restraint events per 1000 bed-days was less extreme but still substantial. Within all four countries there was also significant variation in restraint across districts. Variation across time did not show a steady reduction in restraint in any country during the period for which data were available (starting from 2003 at the earliest). Conclusions Policies to reduce or abolish mechanical restraint do not appear to be effecting change. It is improbable that the variation in restraint within the four examined Pacific Rim countries is accountable for by psychopathology. Greater efforts at reporting, monitoring and carrying out interventions to achieve the stated aim of reducing restraint are urgently needed.


2010 ◽  
Vol 11 (1) ◽  
pp. 42 ◽  
Author(s):  
F. Mathew ◽  
B. Kirkeide ◽  
T. Gulya ◽  
S. Markell

Widespread infection of charcoal rot was observed in a commercial sunflower field in Minnesota in September 2009. Based on morphology, isolates were identified as F. sporotrichioides and F. acuminatum. Koch's postulates demonstrated pathogencity of both species. To our knowledge, this is the first report of F. sporotrichoides and F. acuminatum causing disease on Helianthus annuus L. in the United States. Accepted for publication 23 August 2010. Published 15 September 2010.


2020 ◽  
Vol 1 (3) ◽  
pp. 1283-1297
Author(s):  
Mike Thelwall ◽  
Pardeep Sud

Ongoing problems attracting women into many Science, Technology, Engineering and Mathematics (STEM) subjects have many potential explanations. This article investigates whether the possible undercitation of women associates with lower proportions of, or increases in, women in a subject. It uses six million articles published in 1996–2012 across up to 331 fields in six mainly English-speaking countries: Australia, Canada, Ireland, New Zealand, the United Kingdom and the United States. The proportion of female first- and last-authored articles in each year was calculated and 4,968 regressions were run to detect first-author gender advantages in field normalized article citations. The proportion of female first authors in each field correlated highly between countries and the female first-author citation advantages derived from the regressions correlated moderately to strongly between countries, so both are relatively field specific. There was a weak tendency in the United States and New Zealand for female citation advantages to be stronger in fields with fewer women, after excluding small fields, but there was no other association evidence. There was no evidence of female citation advantages or disadvantages to be a cause or effect of changes in the proportions of women in a field for any country. Inappropriate uses of career-level citations are a likelier source of gender inequities.


Sign in / Sign up

Export Citation Format

Share Document