scholarly journals Genome Analysis of Melon Necrotic Spot Virus Incursions and Seed Interceptions in Australia

Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1969-1978
Author(s):  
Joanne Mackie ◽  
Ellena Higgins ◽  
Grant A. Chambers ◽  
Len Tesoriero ◽  
Ramez Aldaoud ◽  
...  

Melon necrotic spot virus (MNSV) was detected in field-grown Cucumis melo (rockmelon) and Citrullus lanatus (watermelon) plants in the Sunraysia district of New South Wales and Victoria, Australia, in 2012, 2013, and 2016, and in two watermelon seed lots tested at the Australian border in 2016. High-throughput sequencing was used to generate near full-length genomes of six isolates detected during the incursions and seed testing. Phylogenetic analysis of the genomes suggests that there have been at least two incursions of MNSV into Australia and none of the field isolates were the same as the isolates detected in seeds. The analysis indicated that one watermelon field sample (L10), the Victorian rockmelon field sample, and two seed interception samples may have European origins. The results showed that two isolates (L8 and L9) from watermelon were divergent from the type MNSV strain (MNSV-GA, D12536.2) and had 99% nucleotide identity to two MNSV isolates from human stool collected in the United States (KY124135.1, KY124136.1). These isolates also had high nucleotide pairwise identity (96%) to a partial sequence from a Spanish MNSV isolate (KT962848.1). The analysis supported the identification of three previously described MNSV genotype groups: EU-LA, Japan melon, and Japan watermelon. To account for the greater diversity of hosts and geographic regions of the MNSV isolates used in this study, it is suggested that the genotype groups EU-LA, Japan melon, and Japan watermelon be renamed to groups I, II, and III, respectively. The divergent isolates L8 and L9 from this study and the stool isolates from the United States formed a fourth genotype group, group IV. Soil collected from the site of the Victorian rockmelon MNSV outbreak was found to contain viable MNSV and the virus vector, a chytrid fungus, Olpidium bornovanus (Sahtiyanci) Karling, 18 months after the initial MNSV detection. This is a first report of O. bornovanus from soil sampled from an MNSV-contaminated site in Australia.

Author(s):  

Abstract A new distribution map is given for Melon necrotic spot virus (Tombusviridae: Carmovirus). The hosts include melon (Cucumis melo), cucumber (Cucumis sativus) and watermelon (Citrullus lanatus). Information is given on the geographical distribution in Europe (France, Greece, Crete, Italy, Sardinia, Netherlands, Norway, Spain, Canary islands, mainland Spain, Sweden, UK, England and Wales), Asia (China, Jiangsu, Iran, Israel, Japan, Hokkaido, Honshu, Kyushu, Shikoku, Korea Republic, Syria and Turkey), Africa (Tunisia), North America (Canada, Ontario, Mexico, USA, California) Central America and Caribbean (Guatemala, Honduras and Panama) and South America (Uruguay). The virus is transmitted by the fungal vector Olpidium bornovanus (syn. O. radicale) (Chytridiomycota: Olpidiaceae).


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 850-850 ◽  
Author(s):  
S. Poojari ◽  
R. A. Naidu

Basil (Ocimum basilicum L.), a native of India belonging to the Lamiaceae family, is an aromatic herb with distinctive aroma, and several commercial varieties are used extensively for culinary and ornamental purposes. During the summer of 2011 and 2012, potted plants of basil in a commercial greenhouse in the Richland-Kennewick area of Washington State were observed showing foliar symptoms consisting of chlorotic spots, ring spots, leaf distortion, and stem necrosis. In initial tests, extracts of symptomatic leaves were positive for Impatiens necrotic spot virus (INSV; genus Tospovirus, family Bunyaviridae), when tested with INSV immnunostrips (Agdia, Inc., Elkhart, IN). These samples were negative with immunostrips specific to Tomato spotted wilt virus (genus Tospovirus) and group-specific potyviruses. The virus from symptomatic leaves of basil was transmitted by leaf rub inoculation to Nicotiana benthamiana and Emilia sonchifolia, where it produced necrosis on inoculated leaves followed by systemic necrosis in the former and chlorotic spots and mosaic mottling in newly developed leaves in the latter. Symptomatic leaves from both host plants tested positive with INSV, but not with TSWV, immunostrips. For additional confirmation of INSV, total RNA was extracted from symptomatic leaves of basil using RNeasy Plant Minikit (Qiagen, Inc., Valencia, CA) and used for reverse transcription (RT)-PCR amplification of the nucleocapsid (N) gene using forward (5′-AGCTTAAATCAATAGTAGCA-3′) and reverse (5′-AGCTTCCTCAAGAATAGGCA-3′) primers. RT was carried out at 52°C for 60 min followed by denaturation at 94°C for 3 min. Subsequently, 35 cycles of PCR was carried out with each cycle consisting of 94°C for 1 min, 58°C for 45 s, and 72°C for 1 min, followed by a final extension step at 72°C for 10 min. The amplicons of about 610 nt obtained from RT-PCR were cloned into pTOPO2.1 vector (Invitrogen Corporation, Carlsbad, CA) and three independent clones were sequenced in both directions. Sequence analyses of these clones (GenBank Accession No. KC218475) showed 100% nucleotide sequence identity among themselves and 99% nucleotide sequence identity with INSV isolates from the United States (DQ523598, JX138531, and D00914) and a basil isolate (JQ724132) from Austria. These results further confirm the presence of INSV in symptomatic leaves of basil. Previously, basil has been reported to be naturally infected with TSWV in the United States (3) and INSV in Austria (2). Therefore, this study represents the first confirmed report of the virus in basil in the United States. No species of thrips vector was observed on the affected basil plants. The discovery of INSV in basil has important implications for the nursery industry due to the broad host range of the virus (1); stock plants may serve as a source of inoculum in production areas and infected plants could be distributed to homeowners. It is important for commercial nurseries to monitor for INSV to identify infected mother plants to prevent virus spread. Since more than 31 viruses belonging to 13 different genera have been reported in basil ( http://pvo.bio-mirror.cn/famly073.htm#Ocimumbasilicum ), further studies are in progress to determine if the observed symptoms on basil are only due to single infection of INSV. References: (1) M. Daughtrey et al. Plant Dis. 81:1220, 1997. (2). S. Grausgruber-Gröger. New Dis. Rep. 26:12, 2012. (3) G. E. Holcomb et al. Plant Dis. 83:966.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1050-1059 ◽  
Author(s):  
Yen-Wen Kuo ◽  
Robert L. Gilbertson ◽  
Tom Turini ◽  
Eric B. Brennan ◽  
Richard F. Smith ◽  
...  

California is the leading producer of lettuce (Lactuca sativa) for the United States and grows 77% of the country's supply. Prior to 2006, coastal California lettuce was only periodically and incidentally infected by a single tospoviruses species: Tomato spotted wilt virus (TSWV). However, beginning in 2006 and continuing through 2012, severe outbreaks of disease caused by Impatiens necrotic spot virus (INSV) have affected the coastal lettuce crop, though TSWV was also present. In contrast, TSWV was the only tospovirus associated with disease outbreaks in Central Valley lettuce during this period. Disease surveys conducted over two seasons (2008 and 2009) in 10 commercial fields (acreage of 6 to 20 ha) indicated that INSV was the only tospovirus associated with economically damaging disease outbreaks in lettuce in the coastal region, with incidences of 0.5 to 27% (mean = 5.7%). Molecular characterization of INSV isolates associated with these disease outbreaks revealed little genetic diversity and indicated that lettuce-infecting INSV isolates were nearly identical to those previously characterized from ornamental or other hosts from different locations in the United States and the world. Monitoring of thrips revealed moderate to large populations in all surveyed lettuce fields, and the majority of thrips identified from these fields were western flower thrips, Frankliniella occidentalis. There was significant positive correlation (r2 = 0.91, P = 0.003) between thrips populations and INSV incidence in the most commonly encountered type of commercial lettuce (romaine, direct seeded, conventional) included in this study. A reverse-transcription polymerase chain reaction assay developed for detection of INSV in thrips showed promise as a monitoring tool in the field. Surveys for INSV reservoir hosts in the coastal production area revealed that the weeds little mallow (Malva parvifolia) and shepherd's purse (Capsella bursa-pastoris) were commonly infected. M. parvifolia plants infected in the field did not show obvious symptoms, whereas plants of this species inoculated in the laboratory with INSV by sap transmission developed necrotic spots and chlorosis. Eleven other weed species growing in the lettuce production areas were found to be hosts of INSV. Coastal crops found to be infected with INSV included basil (Ocimum basilicum), bell pepper (Capsicum annuum), calla lily (Zantedeschia aethiopica), faba bean (Vicia faba), radicchio (Cichorium intybus), and spinach (Spinacia oleracea). Thus, it is likely that INSV was introduced into coastal California lettuce fields via viruliferous thrips that initially acquired the virus from other local susceptible plant species. Results of this study provide a better understanding of INSV epidemiology in coastal California and may help growers devise appropriate disease management strategies.


2003 ◽  
Vol 113 (2) ◽  
pp. 87-93 ◽  
Author(s):  
B Gosalvez ◽  
J.A Navarro ◽  
A Lorca ◽  
F Botella ◽  
M.A Sánchez-Pina ◽  
...  

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 701-701
Author(s):  
K.-S. Ling ◽  
R. Li ◽  
D. Groth-Helms ◽  
F. M. Assis-Filho

In recent years, viroid disease outbreaks have resulted in serious economic losses to a number of tomato growers in North America (1,2,3). At least three pospiviroids have been identified as the causal agents of tomato disease, including Potato spindle tuber viroid (PSTVd), Tomato chlorotic dwarf viroid (TCDVd), and Mexican papita viroid (MPVd). In the spring of 2013, a severe disease outbreak with virus-like symptoms (chlorosis and plant stunting) was observed in a tomato field located in the Dominican Republic, whose tomato production is generally exported to the United States in the winter months. The transplants were produced in house. The disease has reached an epidemic level with many diseased plants pulled and disposed of accordingly. Three samples collected in May of 2013 were screened by ELISA against 16 common tomato viruses (Alfalfa mosaic virus, Cucumber mosaic virus, Impatiens necrotic spot virus, Pepino mosaic virus, Potato virus X, Potato virus Y, Tobacco etch virus, Tobacco mosaic virus, Tobacco ringspot virus, Tomato aspermy virus, Tomato bushy stunt virus, Tomato mosaic virus, Tomato ringspot virus, Tomato spotted wilt virus, Groundnut ringspot virus, and Tomato chlorotic spot virus), a virus group (Potyvirus group), three bacteria (Clavibacter michiganensis subsp. michiganensis, Pectobacterium atrosepticum, and Xanthomonas spp.), and Phytophthora spp. No positive result was observed, despite the presence of symptoms typical of a viral-like disease. Further analysis by RT-PCR using Agdia's proprietary pospiviroid group-specific primer resulted in positive reactions in all three samples. To determine which species of pospiviroid was present in these tomato samples, full-genomic products of the expected size (~360 bp) were amplified by RT-PCR using specific primers for PSTVd (4) and cloned using TOPO-TA cloning kit (Invitrogen, CA). A total of 8 to 10 clones from each isolate were selected for sequencing. Sequences from each clone were nearly identical and the predominant sequence DR13-01 was deposited in GenBank (Accession No. KF683200). BLASTn searches into the NCBI database demonstrated that isolate DR13-01 shared 97% sequence identity to PSTVd isolates identified in wild Solanum (U51895), cape gooseberry (EU862231), or pepper (AY532803), and 96% identity to the tomato-infecting PSTVd isolate from the United States (JX280944). The relatively lower genome sequence identity (96%) to the tomato-infecting PSTVd isolate in the United States (JX280944) suggests that PSTVd from the Dominican Republic was likely introduced from a different source, although the exact source that resulted in the current disease outbreak remains unknown. It may be the result of an inadvertent introduction of contaminated tomato seed lots or simply from local wild plants. Further investigation is necessary to determine the likely source and route of introduction of PSTVd identified in the current epidemic. Thus, proper control measures could be recommended for disease management. The detection of this viroid disease outbreak in the Dominican Republic represents further geographic expansion of the viroid disease in tomatoes beyond North America. References: (1). K.-S. Ling and M. Bledsoe. Plant Dis. 93:839, 2009. (2) K.-S. Ling and W. Zhang. Plant Dis. 93:1216, 2009. (3) K.-S. Ling et al. Plant Dis. 93:1075, 2009. (4) A. M. Shamloul et al. Can. J. Plant Pathol. 19:89, 1997.


Plant Disease ◽  
2007 ◽  
Vol 91 (4) ◽  
pp. 468-468 ◽  
Author(s):  
D. H. Gent ◽  
R. R. Martin ◽  
C. M. Ocamb

Onion (Allium cepa) and leek (Allium porrum) are grown on approximately 600 ha in western Oregon annually for bulb and seed production. During July and August of 2006, surveys of onion bulb crops and onion and leek seed crops in western Oregon found plants with symptoms of elongated to diamond-shaped, straw-colored lesions characteristic of those caused by Iris yellow spot virus (IYSV) (1–4). Symptomatic plants were collected from fields of an onion bulb crop, an onion seed crop, and two leek seed crops located in Marion County. The onion bulb crop had been planted in the spring of 2006, and the onion and leek seed crops had been planted in the fall of 2005, all direct seeded. Cultivar names were not provided for proprietary purposes. Symptomatic plants in the onion bulb crop and leek seed crop generally were found near the borders of the field. Disease incidence was less than 5% and yield losses in these crops appeared to be negligible. In the onion seed crop, symptomatic plants were found throughout the field and disease incidence was approximately 20%. Approximately 1% of the onion plants in this field had large necrotic lesions that caused the seed stalks (scapes) to lodge. The presence of IYSV was confirmed from symptomatic leaves and scapes by ELISA (Agdia Inc., Elkhart, IN) using antiserum specific to IYSV. RNA was extracted from symptomatic areas of onion leaves and scapes, and a portion of the nucleocapsid gene was amplified by reverse transcription-PCR. The amplicons were sequenced and found to share more than 99% nucleotide and amino acid sequence identity with an onion isolate of IYSV from the Imperial Valley of California (GenBank Accession No. DQ233475). In the Pacific Northwest region of the United States, IYSV has been confirmed in the semi-arid regions of central Oregon (1), central Washington (2), and the Treasure Valley of eastern Oregon and southwest Idaho (3). To our knowledge, this is the first report of the disease on a host crop in the mild, maritime region west of the Cascade Mountain Range and the first report of IYSV on leek seed crops in the United States, which complements a simultaneous report of IYSV on commercial leek in Colorado. The presence of IYSV may have implications for the iris and other ornamental bulb industries in western Oregon and western Washington. This report underscores the need for further research to determine the impact of the disease on allium crops and other hosts and the development of effective management programs for IYSV and the vector, Thrips tabaci. References: (1) F. J. Crowe and H. R. Pappu. Plant Dis. 89:105, 2005. (2) L. J. du Toit et al. Plant Dis. 88:222, 2004. (3) J. M. Hall et al. Plant Dis. 77:952, 1993. (4) H. F. Schwartz et al. Plant Dis. 91:113, 2007.


Author(s):  
Yasunobu Wada ◽  
Hideaki Tanaka ◽  
Eiki Yamashita ◽  
Chikako Kubo ◽  
Tamaki Ichiki-Uehara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document