Influence of spatial planting arrangement of winter rye cover crop on corn seedling disease and corn productivity

Plant Disease ◽  
2021 ◽  
Author(s):  
Sarah Maria Kurtz ◽  
Jyotsna Acharya ◽  
Thomas C. Kaspar ◽  
Alison E Robertson

Despite numerous environmental benefits associated with cover crop (CC) use, some farmers are reluctant to include CCs in their production systems because of reported yield declines in corn. There are numerous potential reasons for this yield decline, including seedling disease. A winter rye CC can serve as a ‘green bridge’ for corn seedling pathogens. We hypothesized that proximity of corn seedling roots to decaying rye CC roots contributes to corn seeding disease. An experimental field plot and an on-farm study were conducted over two years to evaluate growth, development, and disease severity of corn seedlings planted at various distances from decaying winter rye CC plants. The experimental field plot study was conducted in a no-till corn-soybean rotation with five replications of a winter rye CC treatments seeded as (i) no CC control, (ii) broadcast, (iii) 19-cm drilled rows, and (iv) 76-cm drilled rows. The on-farm study was no-till corn-soybean rotation with four replications of a winter rye cover crop seeded as 38-cm drilled rows, 76-cm drilled rows, and no CC control. The corn was planted on 76-cm rows shortly after rye was terminated. With multiple seeding arrangements of winter rye, corn was planted at different distances from winter rye. Corn radicle root rot severity and incidence, shoot height, shoot dry weight, corn height and chlorophyll at VT, ear parameters, and yield were collected. Soil samples were taken in the corn row and the interrow at winter rye termination, corn planting, and corn growth stage V3 to estimate the abundance of Pythium clade B members present in soil samples. Our results showed that increased distance between winter rye residue and corn reduced seedling disease and Pythium clade B populations in the radicles and soil, and increased shoot dry weight, leaf chlorophyll, plant height, and yield. This suggests that physically distancing the corn crop from the winter rye CC is one way to reduce the negative effects of a winter rye CC on corn.

Plant Disease ◽  
2017 ◽  
Vol 101 (4) ◽  
pp. 591-600 ◽  
Author(s):  
J. Acharya ◽  
M. G. Bakker ◽  
T. B. Moorman ◽  
T. C. Kaspar ◽  
A. W. Lenssen ◽  
...  

Experiments were established in a controlled-growth chamber and in the field to evaluate the effect of the length of time intervals between winter rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DBP) to 2 days after planting (DAP) corn in the field and from 21 DBP to 1 DAP in controlled studies. Results were similar in both environments. In general, shorter intervals increased seedling disease and reduced corn emergence, shoot growth, and grain yield of corn following winter rye compared with corn planted 10 or more days after rye termination or without rye. Incidence of Pythium spp. increased with shorter intervals (less than 8 DBP); incidence of Fusarium spp. was not consistent between runs and experiments. In 2014, in the 1-DAP treatment, number of ears and grain yield were reduced (P = 0.05 and 0.02, respectively). In 2015, all termination intervals reduced plant population, number of ears, and yield (P = 0.01), with the 2-DBP treatment causing the biggest decrease. A 10- to 14-day interval between rye termination and corn planting should be followed to improve corn yield following a rye cover crop.


Plant Disease ◽  
2020 ◽  
Author(s):  
Sarah Maria Kurtz ◽  
Jyotsna Acharya ◽  
Thomas C. Kaspar ◽  
Alison E Robertson

Yield loss of corn following a winter rye cover crop (CC) has been associated with increases seedling disease caused by Pythium spp. We hypothesized that physical separation between the CC and corn could reduce the risk of seedling disease, and benefit corn growth and development. In a growth chamber experiment, corn seedlings were planted at 0 cm and 8-10 cm, from terminated winter rye plants. Root rot severity was assessed at crop development stage V2, and quantitative PCR was used to estimate the abundance of Pythium clade B and clade F members present in corn roots. Radicle and seminal root rot severity was numerically greater when seedlings were planted 0 cm from terminated rye plants compared to seedlings planted 8-10 cm away. Moreover, a greater abundance of Pythium clade B was detected in corn grown within the terminated winter rye compared to corn planted further away (P = 0.0003). No effect of distance between corn and winter rye was detected for Pythium clade F. These data contribute to our understanding of the effect of a winter rye cover crop on corn and will inform field trial management practices for farmers to reduce occasional yield loss of corn following a winter rye cover crop.


Author(s):  
Grazieli Araldi Da Silva ◽  
Gang Han ◽  
Yuba Raj Kandel ◽  
Daren S. Mueller ◽  
Matthew Helmers ◽  
...  

Cover crops improve soil and water quality in annual cropping systems, but knowledge of their impact on soybean (Glycine max L.) seedling and root diseases is limited. The effects of winter rye cover crops (Secale cereale L.) on soybean population, biomass, root morphology, seedling and root diseases, pathogen incidence, canopy reflectance, and yield were assessed over two years in Iowa and Missouri, USA. Plots without a rye cover crop were compared to plots with early-kill rye and late-kill rye cover crops, which were terminated 34 to 49 days or 5 to 17 days before soybean planting, respectively. Soybean shoot dry weight, root rot severity, and incidence of Fusarium spp. and Pythium spp. on roots were not influenced by the treatments. Soybean grain yield and plant population were reduced in the presence of rye in two site-years, increased in one site-year, and not changed in the remaining site-years. Soybean canopy reflectance was measured at 810 nm and measurements were first made at 70 to 80 days after planting (DAP). At least five measurements were obtained at 7- to 15- day intervals, ending at 120 to 125 DAP. Measurements at approximately 120 to 125 DAP differed by treatments but were not consistently associated with the presence or absence of a rye cover crop. Our field studies suggest that Iowa and Missouri soybean farmers can use winter rye as a cover crop in soybean fields with low seedling disease pressure without increasing the risk of seedling and root diseases or suppressing yield.


2021 ◽  
Author(s):  
Harry H. Schomberg ◽  
Dinku M. Endale ◽  
Kipling S. Balkcom ◽  
Randy L. Raper ◽  
Dwight H. Seman
Keyword(s):  

2018 ◽  
Vol 35 (3) ◽  
pp. 227-233 ◽  
Author(s):  
Natalie P Lounsbury ◽  
Nicholas D Warren ◽  
Seamus D Wolfe ◽  
Richard G Smith

AbstractHigh-residue cover crops can facilitate organic no-till vegetable production when cover crop biomass production is sufficient to suppress weeds (>8000 kg ha−1), and cash crop growth is not limited by soil temperature, nutrient availability, or cover crop regrowth. In cool climates, however, both cover crop biomass production and soil temperature can be limiting for organic no-till. In addition, successful termination of cover crops can be a challenge, particularly when cover crops are grown as mixtures. We tested whether reusable plastic tarps, an increasingly popular tool for small-scale vegetable farmers, could be used to augment organic no-till cover crop termination and weed suppression. We no-till transplanted cabbage into a winter rye (Secale cereale L.)-hairy vetch (Vicia villosa Roth) cover crop mulch that was terminated with either a roller-crimper alone or a roller-crimper plus black or clear tarps. Tarps were applied for durations of 2, 4 and 5 weeks. Across tarp durations, black tarps increased the mean cabbage head weight by 58% compared with the no tarp treatment. This was likely due to a combination of improved weed suppression and nutrient availability. Although soil nutrients and biological activity were not directly measured, remaining cover crop mulch in the black tarp treatments was reduced by more than 1100 kg ha−1 when tarps were removed compared with clear and no tarp treatments. We interpret this as an indirect measurement of biological activity perhaps accelerated by lower daily soil temperature fluctuations and more constant volumetric water content under black tarps. The edges of both tarp types were held down, rather than buried, but moisture losses from the clear tarps were greater and this may have affected the efficacy of clear tarps. Plastic tarps effectively killed the vetch cover crop, whereas it readily regrew in the crimped but uncovered plots. However, emergence of large and smooth crabgrass (Digitaria spp.) appeared to be enhanced in the clear tarp treatment. Although this experiment was limited to a single site-year in New Hampshire, it shows that use of black tarps can overcome some of the obstacles to implementing cover crop-based no-till vegetable productions in northern climates.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 462C-462
Author(s):  
Michelle L. Infante-Casella ◽  
Steven A. Garrison

Many squash varieties are large-seeded and may be well-suited for planting under no-till production systems. A study was done at the Rutgers Agricultural Research and Extension Center in Bridgeton, N.J., to evaluate the yield and loss of soil when butternut squash (BS) (Cucurbita moschata `Waltham') was grown using no-till (NT), strip-till (ST), and bare ground (BG) tillage systems. The soil was a Sassafrass gravely sand loam and the field had a 3% slope. A cover crop mixture of hairy vetch and winter rye planted on 23 Sept. 1998 using a Brillion seeder at a rate of 136.2 kg/ha and 610.2 kg/ha, respectively, was used to create the NT and ST plots. NT and ST plots containing the cover crop mixture were killed with Glyphosate and chopped using a Buffalo stalk chopper on 27 May. BG plots were tilled clean before planting and ST plots were rototilled to a 30.48 cm band to establish a seedbed. BS seeds were hand-planted on 7 July with a spacing of 38.1 cm between plants and 182.9 cm between rows. Irrigation was applied overhead at a rate of 6.28 cm/ha weekly. Erosion was measured using inverted pans over the soil area to be measured. Harvest took place on 21Oct. and yields included only marketable fruit with the following results: NT = 8.65 t/ha; ST = 8.99 t/ha; BG = 4.06 t/ha. Yields in the NT and ST plots were significantly higher than yields in the BG plots. Soil erosion measurements were taken on 21 Oct. Soil loss results from the plots were 0.08 cm (NT), 0.84 cm (ST), and 3.33 cm (BG). Soil loss, mainly due to water erosion, was significantly higher in the BG plots. BS yields can be significantly higher when using alternative tillage systems like NT and ST. When using NT and ST systems for the production of BS, soil erosion is reduced


1991 ◽  
Vol 6 (2) ◽  
pp. 71-82 ◽  
Author(s):  
D. L. Karlen ◽  
J. W. Doran

AbstractCombining cover crops and conservation tillage may result in more sustainable agricultural production practices. Objectives of this on-farm study were to quantify effects of cover crops on growth and nitrogen accumulation by soybean [Glycine max (L.) Merr,] and corn (Zea mays L.) on a Nicollet loam (fine-loamy, mixed, mesic Aquic Hapludoll) near Boone, Iowa, Our farmer-cooperator planted soybean in 1988 using ridge tillage into an undisturbed strip with a hairy vetch (Vicia villosa L. Roth) cover crop and into a strip where previous crop residue and a negligible amount of cover crop had been incorporated by autumn and spring disking. In each strip, we established four plots for soil and plant measurements. Our cooperator planted corn on the same strips in 1989 into a cover crop that consisted of both hairy vetch and winter rye (Secale cereale L.). We determined the source of N accumulated by the corn by applying 67 kg N/ha of 15N depleted NH4NO3 fertilizer. In the absence of cover crops, early season soil NO3-N levels in the top 30 cm were higher, and corn growth and N accumulation were more rapid. At harvest, the corn grain, stover, and cob together accounted for 36 and 39 percent of the 15N fertilizer for the ridge tillage and disked treatments, respectively. We suggest that lower net mineralization of organic matter or greater denitrification losses before planting reduced the availability of soil N, This created an early season Nstress in corn grown with cover crops that was not overcome by broadcast fertilizer N applied three weeks after planting. Our on-farm research study has helped focus continuing efforts to determine if non-recovered fertilizer N is being immobilized in microbial biomass, lost by denitrification, or leached below the plant root zone.


2014 ◽  
Vol 106 (3) ◽  
pp. 1041-1050 ◽  
Author(s):  
H. H. Schomberg ◽  
D. S. Fisher ◽  
D. W. Reeves ◽  
D. M. Endale ◽  
R. L. Raper ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document