scholarly journals The effects of winter rye cover crop on corn seedling disease, corn growth and development in respects to winter rye seeding spacing

2021 ◽  
Author(s):  
Sarah Maria Kurtz
Plant Disease ◽  
2017 ◽  
Vol 101 (4) ◽  
pp. 591-600 ◽  
Author(s):  
J. Acharya ◽  
M. G. Bakker ◽  
T. B. Moorman ◽  
T. C. Kaspar ◽  
A. W. Lenssen ◽  
...  

Experiments were established in a controlled-growth chamber and in the field to evaluate the effect of the length of time intervals between winter rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DBP) to 2 days after planting (DAP) corn in the field and from 21 DBP to 1 DAP in controlled studies. Results were similar in both environments. In general, shorter intervals increased seedling disease and reduced corn emergence, shoot growth, and grain yield of corn following winter rye compared with corn planted 10 or more days after rye termination or without rye. Incidence of Pythium spp. increased with shorter intervals (less than 8 DBP); incidence of Fusarium spp. was not consistent between runs and experiments. In 2014, in the 1-DAP treatment, number of ears and grain yield were reduced (P = 0.05 and 0.02, respectively). In 2015, all termination intervals reduced plant population, number of ears, and yield (P = 0.01), with the 2-DBP treatment causing the biggest decrease. A 10- to 14-day interval between rye termination and corn planting should be followed to improve corn yield following a rye cover crop.


Plant Disease ◽  
2021 ◽  
Author(s):  
Sarah Maria Kurtz ◽  
Jyotsna Acharya ◽  
Thomas C. Kaspar ◽  
Alison E Robertson

Despite numerous environmental benefits associated with cover crop (CC) use, some farmers are reluctant to include CCs in their production systems because of reported yield declines in corn. There are numerous potential reasons for this yield decline, including seedling disease. A winter rye CC can serve as a ‘green bridge’ for corn seedling pathogens. We hypothesized that proximity of corn seedling roots to decaying rye CC roots contributes to corn seeding disease. An experimental field plot and an on-farm study were conducted over two years to evaluate growth, development, and disease severity of corn seedlings planted at various distances from decaying winter rye CC plants. The experimental field plot study was conducted in a no-till corn-soybean rotation with five replications of a winter rye CC treatments seeded as (i) no CC control, (ii) broadcast, (iii) 19-cm drilled rows, and (iv) 76-cm drilled rows. The on-farm study was no-till corn-soybean rotation with four replications of a winter rye cover crop seeded as 38-cm drilled rows, 76-cm drilled rows, and no CC control. The corn was planted on 76-cm rows shortly after rye was terminated. With multiple seeding arrangements of winter rye, corn was planted at different distances from winter rye. Corn radicle root rot severity and incidence, shoot height, shoot dry weight, corn height and chlorophyll at VT, ear parameters, and yield were collected. Soil samples were taken in the corn row and the interrow at winter rye termination, corn planting, and corn growth stage V3 to estimate the abundance of Pythium clade B members present in soil samples. Our results showed that increased distance between winter rye residue and corn reduced seedling disease and Pythium clade B populations in the radicles and soil, and increased shoot dry weight, leaf chlorophyll, plant height, and yield. This suggests that physically distancing the corn crop from the winter rye CC is one way to reduce the negative effects of a winter rye CC on corn.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 677-687 ◽  
Author(s):  
Jyotsna Acharya ◽  
Thomas B. Moorman ◽  
Thomas C. Kaspar ◽  
Andrew W. Lenssen ◽  
Alison E. Robertson

The effects of winter cover crops on root disease and growth of corn and soybeans are poorly understood. A 3-year field experiment investigated the effect of winter cereal rye (Secale cereale L.) and winter camelina (Camelina sativa [L.] Crantz), used either in all three years or in rotation with each other, on corn (Zea mays L.) and soybean (Glycine max. [L.] Merr.) growth, root disease, and yield. Corn following a cover crop of camelina had reduced root disease, a lower Pythium population in seedling roots, and greater growth and yields compared with corn following a rye cover crop. Camelina and rye cover crops before soybean had either a positive or no effect on soybean growth and development, root disease, and yield. Moreover, Pythium clade B populations were greater in corn seedlings after a rye cover crop compared with those following a camelina cover crop, whereas clade F populations were greater on soybean seedlings following a camelina cover crop compared with seedlings following a rye cover crop. A winter camelina cover crop grown before corn had less-negative effects on corn seedling growth, root disease, and final yield than a winter rye cover crop before corn. Neither cover crop had negative effects on soybean, and the cover crop in the preceding spring had no measurable effects on either corn or soybean.


Plant Disease ◽  
2020 ◽  
Author(s):  
Sarah Maria Kurtz ◽  
Jyotsna Acharya ◽  
Thomas C. Kaspar ◽  
Alison E Robertson

Yield loss of corn following a winter rye cover crop (CC) has been associated with increases seedling disease caused by Pythium spp. We hypothesized that physical separation between the CC and corn could reduce the risk of seedling disease, and benefit corn growth and development. In a growth chamber experiment, corn seedlings were planted at 0 cm and 8-10 cm, from terminated winter rye plants. Root rot severity was assessed at crop development stage V2, and quantitative PCR was used to estimate the abundance of Pythium clade B and clade F members present in corn roots. Radicle and seminal root rot severity was numerically greater when seedlings were planted 0 cm from terminated rye plants compared to seedlings planted 8-10 cm away. Moreover, a greater abundance of Pythium clade B was detected in corn grown within the terminated winter rye compared to corn planted further away (P = 0.0003). No effect of distance between corn and winter rye was detected for Pythium clade F. These data contribute to our understanding of the effect of a winter rye cover crop on corn and will inform field trial management practices for farmers to reduce occasional yield loss of corn following a winter rye cover crop.


Author(s):  
John E. Sawyer ◽  
Jose L. Pantoja ◽  
Daniel W. Barker

Author(s):  
John E. Sawyer ◽  
Jose L. Pantoja ◽  
Daniel W. Barker

Author(s):  
John E. Sawyer ◽  
Jose L. Pantoja ◽  
Daniel W. Barker

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 441
Author(s):  
Hans J. Kandel ◽  
Dulan P. Samarappuli ◽  
Kory L. Johnson ◽  
Marisol T. Berti

Adoption of cover crop interseeding in the northwestern Corn Belt in the USA is limited due to inadequate fall moisture for establishment, short growing season, additional costs, and need for adapted winter-hardy species. This study evaluated three cover crop treatments—no cover crop, winter rye (Secale cereale L.), and winter camelina (Camelina sativa (L.) Crantz)—which were interseeded at the R6 soybean growth stage, using two different soybean (Glycine max (L.) Merr.) maturity groups (0.5 vs. 0.9) and two row spacings (30.5 vs. 61 cm). The objective was to evaluate these treatments on cover crop biomass, soil cover, plant density, and soybean yield. Spring wheat (Triticum aestivum L.) grain yield was also measured the following year. The early-maturing soybean cultivar (0.5 maturity) resulted in increased cover crop biomass and soil cover, with winter rye outperforming winter camelina. However, the early-maturing soybean yielded 2308 kg·ha−1, significantly less compared with the later maturing cultivar (2445 kg·ha−1). Narrow row spacing had higher soybean yield, but row spacing did not affect cover crop growth. Spring wheat should not follow winter rye if rye is terminated right before seeding the wheat. However, wheat planted after winter camelina was no different than when no cover crop was interseeded in soybean. Interseeding cover crops into established soybean is possible, however, cover crop biomass accumulation and soil cover are limited.


2021 ◽  
Author(s):  
Harry H. Schomberg ◽  
Dinku M. Endale ◽  
Kipling S. Balkcom ◽  
Randy L. Raper ◽  
Dwight H. Seman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document