scholarly journals First Report of Pestalotiopsis microspora Causing Leaf Spot on Moyeam in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Si-Qi Yuan ◽  
icai Wang ◽  
Ling Lei ◽  
Ju-Yun Hong ◽  
Tuyong Yi ◽  
...  

Ampelopsis grossedentata, commonly known as moyeam, has been widely used as health care herbal tea since it contains natural plant protein cream, 17 amino acids, 14 micronutrients and lots of functional flavonoid and provides a wide range of pharmaceutical functions such as antioxidant, anti-inflammatory, antitumor (Carneiro et al. 2021; Zhang et al. 2020). Moyeam is primarily produced in Zhangjiajie, stretching over the area from between 109’40 to 110’20E to between 28’52 to 29’48N, at 1300 to1890 meter above the sea level, with subtropical humid monsoon climate. Its economic value surpasses $1.25 billion in China (Liang et al. 2020). In July 2020, leaf spots were observed on some moyeam plants in Zhangjiajie. Initial spots were pinhead-sized with a yellow halo margin. The spots developed into light brown necrotic spots 6 to 8 mm in diameter, often with a dark brown margin. After 4 days of development, the spots enlarged and coalesced into irregular shape, frequently falling out and giving the leaves a tattered appearance. The infected plants eventually died with disease incidence ranging from 18 to 23%. This disease resulted in production losses of up to $1.7 million in 2020. One fungal isolate was isolated from the symptomatic leaves based on our previously published methods (Yi et al. 2019). Colonies on potato dextrose agar (PDA) were thick and villous with white at the front of the plate and yellowish at the back. After 1 week, the fungus produced conidia, which were spindle-shaped, straight or slightly curved, with 5 cells, 4-euseptates and 2-3 apical accessory filaments. Morphologically, the fungus was similar to Pestalotiopsis spp. Aerial hyphae with vigorous growth were collected for molecular identification. ITS nucleotide sequence of the rDNA and β-tubulin gene were amplified and sequenced with universal primers ITS1/ITS4 and self-designed primers based on β-tubulin gene conserved motif. BLAST searches against GenBank indicated that the ITS nucleotide sequence shared 99% similarity with that of P. microspora (MG808374.1) and the β-tubulin gene sequence shared 99% similarity with that of P. microspora (AF115396.1). Based on morphological and molecular characteristics, the fungus was identified as P. microspora. ITS and the β-tubulin nucleotide sequences were deposited in GenBank (accession no. MW350011 and MW816914). Pathogenicity tests were carried out with the following procedure. Three healthy moyeam seedlings were sprayed with a conidial suspension of 1 x106 conidia/ml while the other three seedlings were sprayed with distilled water as the controls. Plants were maintained in a greenhouse at 28±1°C. After one day of inoculation, symptoms identical to those in the field developed in the plants inoculated with the fungus. In contrast, no symptoms developed on the control plants. P. microspora has been reported to cause diseases in many crops in China. However, this is the first report of P. microspora causing leaf spot in moyeam in China. Identifying the pathogen causing the disease is important to the development of effective disease management strategies for control of this disease.

Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1434-1434
Author(s):  
J.-H. Kwon ◽  
D.-W. Kang ◽  
M.-G. Cheon ◽  
J. Kim

In South Korea, the culture, production, and consumption of blueberry (Vaccinium corymbosum) have increased rapidly over the past 10 years. In June and July 2012, blueberry plants with leaf spots (~10% of disease incidence) were sampled from a blueberry orchard in Jinju, South Korea. Leaf symptoms included small (1 to 5 mm in diameter) brown spots that were circular to irregular in shape. The spots expanded and fused into irregularly shaped, large lesions with distinct dark, brownish-red borders. The leaves with severe infection dropped early. A fungus was recovered consistently from sections of surface-disinfested (1% NaOCl) symptomatic leaf tissue after transfer onto water agar and sub-culture on PDA at 25°C. Fungal colonies were dark olive and produced loose, aerial hyphae on the culture surfaces. Conidia, which had 3 to 6 transverse septa, 1 to 2 longitudinal septa, and sometimes also a few oblique septa, were pale brown to golden brown, ellipsoid to ovoid, obclavate to obpyriform, and 16 to 42 × 7 to 16 μm (n = 50). Conidiophores were pale to mid-brown, solitary or fasciculate, and 28 to 116 × 3 to 5 μm (n = 50). The species was placed in the Alternaria alternata group (1). To confirm the identity of the fungus, the complete internal transcribed spacer (ITS) rDNA region of a representative isolate, AAVC-01, was amplified using ITS1 and ITS4 primers (2). The DNA products were cloned into the pGEM-T Easy vector (Promega, Madison, WI) and the resulting pOR13 plasmid was sequenced using universal primers. The resulting 570-bp sequence was deposited in GenBank (Accession No. KJ636460). Comparison of ITS rDNA sequences with other Alternaria spp. using ClustalX showed ≥99% similarity with the sequences of A. alternata causing blight on Jatropha curcas (JQ660842) from Mexico and Cajannus cajan (JQ074093) from India, citrus black rot (AF404664) from South Africa, and other Alternaria species, including A. tenuissima (WAC13639) (3), A. lini (Y17071), and A. longipes (AF267137). Two base substitutions, C to T at positions 345 and 426, were found in the 570-bp amplicon. Phylogenetic analysis revealed that the present Alternaria sp. infecting blueberry grouped separately from A. tenuissima and A. alternata reported from other hosts. A representative isolate of the pathogen was used to inoculate V. corymbosum Northland leaves for pathogenicity testing. A conidial suspension (2 × 104 conidia/ml) from a single spore culture and 0.025% Tween was spot inoculated onto 30 leaves, ranging from recently emerged to oldest, of 2-year-old V. corymbosum Northland plants. Ten leaves were treated with sterilized distilled water and 0.025% Tween as a control. The plants were kept in a moist chamber with >90% relative humidity at 25°C for 48 h and then moved to a greenhouse. After 15 days, leaf spot symptoms similar to those observed in the field developed on the inoculated leaves, whereas the control plants remained asymptomatic. The causal fungus was re-isolated from the lesions of the inoculated plants to fulfill Koch's postulates. To our knowledge, this is the first report of Alternaria sp. on V. corymbosum in South Korea. References: (1) E. G. Simmons. Page 1797 in: Alternaria: An Identification Manual. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands, 2007. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (3) M. P. You et al. Plant Dis. 98:423, 2014.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1227-1227 ◽  
Author(s):  
A. Nasehi ◽  
J. B. Kadir ◽  
M. A. Zainal Abidin ◽  
M. Y. Wong ◽  
F. Abed Ashtiani

Symptoms of gray leaf spot were first observed in June 2011 on pepper (Capsicum annuum) plants cultivated in the Cameron Highlands and Johor State, the two main regions of pepper production in Malaysia (about 1,000 ha). Disease incidence exceeded 70% in severely infected fields and greenhouses. Symptoms initially appeared as tiny (average 1.3 mm in diameter), round, orange-brown spots on the leaves, with the center of each spot turning gray to white as the disease developed, and the margin of each spot remaining dark brown. A fungus was isolated consistently from the lesions using sections of symptomatic leaf tissue surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile water, dried, and plated onto PDA and V8 agar media (3). After 7 days, the fungal colonies were gray, dematiaceous conidia had formed at the end of long conidiophores (19.2 to 33.6 × 12.0 to 21.6 μm), and the conidia typically had two to six transverse and one to four longitudinal septa. Fifteen isolates were identified as Stemphylium solani on the basis of morphological criteria described by Kim et al. (3). The universal primers ITS5 and ITS4 were used to amplify the internal transcribed spacer region (ITS1, 5.8, and ITS2) of ribosomal DNA (rDNA) of a representative isolate (2). A 570 bp fragment was amplified, purified, sequenced, and identified as S. solani using a BLAST search with 100% identity to the published ITS sequence of an S. solani isolate in GenBank (1). The sequence was deposited in GenBank (Accession No. JQ736024). Pathogenicity of the fungal isolate was tested by inoculating healthy pepper leaves of cv. 152177-A. A 20-μl drop of conidial suspension (105 spores/ml) was used to inoculate each of four detached, 45-day-old pepper leaves placed on moist filter papers in petri dishes (4). Four control leaves were inoculated similarly with sterilized, distilled water. The leaves were incubated at 25°C at 95% relative humidity for 7 days. Gray leaf spot symptoms similar to those observed on the original pepper plants began to develop on leaves inoculated with the fungus after 3 days, and S. solani was consistently reisolated from the leaves. Control leaves did not develop symptoms and the fungus was not reisolated from these leaves. Pathogenicity testing was repeated with the same results. To our knowledge, this is the first report of S. solani causing gray leaf spot on pepper in Malaysia. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. P. S. Camara et al. Mycologia 94:660, 2002. (3) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (4) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1427-1427 ◽  
Author(s):  
H. Zhu ◽  
X.-Q. Niu ◽  
W.-W. Song ◽  
F.-Y. Yu ◽  
Q.-H. Tang ◽  
...  

Tea oil camellia (Camellia oleifera Abel.), one of the most famous woody oil plants, is distributed and cultivated widely in central and southern China for its strong adaptability. In September 2013, tea oil camellia plants with severe leaf spots were observed in commercial production fields located in Wenchang, Hainan Province. Spots were initially chlorotic, became necrotic and black with a chlorotic halo, developing to cover the entire width of the leaves, and leading to leaf death. Isolations were performed by excising pieces of symptomatic leaves from the lesion margin, surface sterilized with 90% ethanol and 0.6% sodium hypochlorite, and then placed them on potato dextrose agar (PDA). Plates were incubated in a sterile chamber at 26 ± 2°C for 2 days. A fungus was consistently isolated on PDA from all 23 diseased leaf samples. Pure cultures were obtained by monosporic culture technique. After 2 to 3 days of incubation at 26 ± 2°C with a 12-h photoperiod, the fungus initially produced white colonies with dense aerial mycelia, which later turned black (6 to 7 days). The mycelium was fast spreading, branched, and septate. Pycnidia were black, globose, ostiolate, and produced in stroma on the medium surface after 28 days at the same culture conditions as above. Conidia were initially unicellular, subovoid, hyaline, thick-walled with granular content, and 19.8 to 28.9 × 11.5 to 15.7 μm (avg. 25.1 × 13.5 μm). Mature conidia were one-septate and dark brown with longitudinal striations. These observed morphological features suggested that the fungus possessed the same characteristics as previously described for Lasiodiplodia theobromae (Pat.) Griffon & Maubl (syn = Botryodiplodia theobromae) (2). For molecular identification, the ITS1-5.8S-ITS2 region and fragments of the β-tubulin and elongation factor 1-alpha (EF1-α) genes were sequenced and BLASTn searches done in GenBank. Accession numbers of gene sequences submitted to GenBank were KF811055 for ITS region; KJ639047 for β-tubulin; and KJ639048 for EF1-α. For all genes used, sequences were 99 to 100% identical to reference isolate CBS164.96 of L. theobromae reported in GenBank (NR_111174, EU673110, and AY640258). Hence, both morphological and molecular characteristics confirmed the fungus as L. theobromae. To confirm fungal pathogenicity, ten 1-year-old healthy plants of C. oleifera were inoculated with the fungus. Mycelial plugs (5 mm) taken from a 7-day-old colony growing on PDA were deposited on wounds with a sterilized knife on leaves and covered with moist cotton. Ten additional control plants were treated similarly but with sterile PDA plugs. Plants were maintained in a moist chamber at 26 ± 2°C for 3 days and then in a greenhouse at 25°C and 40% relative humidity. All the inoculated plants produced typical leaf spot symptoms 3 weeks after inoculation. The fungus was consistently re-isolated from all inoculated plants. Control plants did not show any symptoms. L. theobromae has been reported to cause cankers and dieback in a wide range of hosts and is common in tropical and subtropical regions of the world (1,2), but not previously reported causing disease on C. oleifera. To our knowledge, this is the first report worldwide of leaf spot of C. oleifera caused by L. theobromae. References: (1) S. Mohali et al. For. Pathol. 35:385, 2005. (2) E. Punithalingam. Page 519 in: CMI Descriptions of Pathogenic Fungi and Bacteria. Commonwealth Mycological Institute, Kew, Surrey, UK, 1976.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 284-284 ◽  
Author(s):  
S. Mahadevakumar ◽  
K. M. Jayaramaiah ◽  
G. R. Janardhana

Lablab purpureus (L.) Sweet (Indian bean) is an important pulse crop grown in arid and semi-arid regions of India. It is one of the most widely cultivated legume species and has multiple uses. During a September 2010 survey, we recorded a new leaf spot disease on L. purpureus in and around Mysore district (Karnataka state) with 40 to 80% disease incidence in 130 ha of field crop studied, which accounted for 20 to 35% estimated yield loss. The symptoms appeared as small necrotic spots on the upper leaf surface. The leaf spots were persistent under mild infection throughout the season with production of conidia in clusters on abaxial leaf surface. A Dueteromyceteous fungus was isolated from affected leaf tissues that were surface sterilized with 2% NaOCl2 solution then washed thrice, dried, inoculated on potato dextrose agar (PDA) medium, and incubated at 28 ± 2°C at 12 h alternate light and dark period for 7 days. The fungal colony with aerial mycelia interspersed with dark cushion-shaped sporodochia consists of short, compact conidiophores bearing large isodiametric, solitary, muricate, brown, globular to pear shaped conidia (29.43 to 23.92 μm). Fungal isolate was identified as Epicoccum sp. based on micro-morphological and cultural features (1). Further authenticity of the fungus was confirmed by PCR amplification of the internal transcribed spacer (ITS) region using ITS1/ITS4 universal primer. The amplified PCR product was purified, sequenced directly, and BLASTn search revealed 100% homology to Epicoccum nigrum Link. (DQ093668.1 and JX914480.1). A representative sequence of E. nigrum was deposited in GenBank (Accession No. KC568289.1). The isolated fungus was further tested for its pathogenicity on 30-day-old healthy L. purpureus plants under greenhouse conditions. A conidial suspension (106 conidia/ml) was applied as foliar spray (three replicates of 15 plants each) along with suitable controls. The plants were kept under high humidity (80%) for 5 days and at ambient temperature (28 ± 2°C). The appearance of leaf spot symptoms were observed after 25 days post inoculation. Further, the pathogen was re-isolated and confirmed by micro-morphological characteristics. E. nigrum has been reported to cause post-harvest decay of cantaloupe in Oklahoma (2). It has also been reported as an endophyte (3). Occurrence as a pathogen on lablab bean has not been previously reported. To our knowledge, this is the first report of the occurrence of E. nigrum on L. purpureus in India causing leaf spot disease. References: (1) H. L. Barnet and B. B. Hunter. Page 150 in: Illustrated Genera of Imperfect Fungi, 1972. (2) B. D. Bruten et al. Plant Dis. 77:1060, 1993. (3) L. C. Fávaro et al. PLoS One 7(6):e36826, 2012.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1187-1187 ◽  
Author(s):  
A. O. Adesemoye ◽  
A. Eskalen

Eutypella is one of the few genera in the Diatrypaceae considered plant pathogens (1). In California, E. vitis and other members of the Diatrypaceae cause branch and trunk canker on grapevine (3,4). Eutypella spp. have not previously been documented as pathogens of citrus. In a 2010 survey on citrus branch canker and dieback in six citrus-growing counties of California, four isolates of Eutypella species were detected in Riverside and San Diego counties. Canker symptoms included dieback and bark cracking, and cuts made through symptomatic trees showed that the cankers were expanding through the center of the tree. Branch samples were collected from 10 trees per orchard and 5 to 10 orchards per county (102 trees for two counties). Pieces of symptomatic tissue (1 to 2 mm2) were plated onto potato dextrose agar amended with 0.01% tetracycline (PDA-tet) and incubated at 25°C for 4 days. All isolates were identified by morphological and molecular characteristics. PCR of isolates was performed in a thermal cycler using two primer pairs, ITS4/5 and Bt2a/2b for amplifying the internal transcribed spacer (ITS1), 5.8S, and ITS2 region and the β-tubulin gene, respectively (2,3). PCR products were sequenced at the University of California, Riverside Genomics Core and the sequences compared in a BLAST search. Four isolates identified as Eutypella spp. included two (UCR1088 and UCR1101) from San Diego County and two (UCR1148 and UCR1149) from the Riverside County samples. The sequences were deposited in GenBank (HQ880579, JF758610, HQ880581, and HQ880582 and HQ880583, JF758611, HQ880585, and HQ880586 for the ITS regions and β-tubulin gene, respectively. ITS sequences for UCR1088 and UCR1101 had 98 and 100% match, respectively, to Eutypella spp. ITS sequences in GenBank (GQ293959 to GQ293961), while UCR1148 and UCR1149 matched 99% (GQ293956 to GQ293958). On the basis of morphological characteristics, UCR1088 and UCR1101 were similar to Eutypella spp. group 1, while UCR1148 and UCR1149 were similar to Eutypella spp. group 3 (4). Pathogenicity tests were conducted with all four isolates on detached shoots from healthy citrus trees of the same cultivar/rootstock from which each isolate was obtained. One wound per shoot was made on 1-year-old, green, detached shoots using a 3-mm-diameter cork borer and the wounded surfaces were inoculated with 3-mm-diameter mycelial plugs of 5-day-old cultures of each isolate growing on PDA-tet. Inoculated wounds and shoot ends were covered with petroleum jelly and wrapped with Parafilm (3). Control shoots were inoculated with sterile agar plugs. There were 10 inoculated shoots per isolate and noninoculated control treatment. Shoots were incubated at 25°C in moist chambers for 6 weeks. Lesions similar to those on the original infected shoots were observed on all inoculated shoots except the control treatment. Reisolation and identification of fungi from inoculated and control shoots were done using methods described above. Inoculated isolates were recovered from 100% of inoculated shoots but none was recovered from noninoculated shoots, indicating association of Eutypella spp. with citrus branch canker. To our knowledge, this is the first report of Eutypella spp. associated with cankers on citrus in California. References: (1) B. Piskur et al. Plant Dis. 91:1579, 2007. (2) B. Slippers et al. Mycologia 96:83, 2004. (3) F. P. Trouillas and W. D. Gubler. Plant Dis. 94:867, 2010. (4) F. P. Trouillas et al. Mycologia 102:319, 2010.


Plant Disease ◽  
2006 ◽  
Vol 90 (12) ◽  
pp. 1553-1553 ◽  
Author(s):  
Y. S. Luan ◽  
L. Feng ◽  
L. J. An

During late July and early August of 2005, leaf spot symptoms were observed in a blueberry nursery at a plantation in Dalian, which to our knowledge, lies within the largest blueberry-production area in China. Symptoms were observed primarily on lowbush species, for example Blomidon, as well as half-highbush cultivars. A slow-growing, white mycelium from the margin of necrotic leaf spots was recovered on potato dextrose agar (PDA). The following morphological traits were observed: erect conidiophores that branch twice and were terminated in a stiped, clavate phialide; hyaline, cylindrical, four-celled conidia; and globose, reddish brown, aggregated chlamydospores. Conidiophores (including stipes and terminal phialides) were 305 to 420 × 5 to 9 μm; primary branches were 9 to 45 × 5 to 6.3 μm; secondary branches were 9 to 17.3 × 3.1 to 4.5 μm; phialides were 7.8 to 17.5 × 2.5 to 6 μm; stipes (from the highest branch area to vesicle) were 150 to 270 μm long; and vesicles were 13 to 30 × 2 to 4.5 μm. Conidia were 50 to 72 × 4 to 5.5 μm. Chlamydospores were 15 to 20 μm in diameter. Koch's postulates were fulfilled by spray inoculating two healthy cultivars with conidiophores homogenized in axenic water. As a control, two healthy plants were sprayed with axenic water. Plants were placed inside plastic bags to maintain humidity and incubated in a growth chamber at 26°C under fluorescent light for 14 h and 20°C in darkness for 10 h. After 2 days, the plastic bags were removed and plants were maintained under the same conditions. After 4 days, small-to-medium brown spots with purplish margins were observed on the adaxial side of leaves from inoculated plants, but not from control plants. Fungi isolated from these lesions had the same morphological traits as the ones isolated previously from field plants. The morphological descriptions and measurements were similar to Cylindorocladium colhounii (2). The 5.8S subunit and flanking internal transcribed spacers (ITS1 and ITS2) of rDNA and the β-tubulin gene were amplified from DNA extracted from single-spore cultures using the ITS1/ITS4 primers and T1/Bt2b primers, respectively, and sequenced (1). The ITS and β-tubulin gene sequences were similar to C. colhounii STE-U 1237 (99%; GenBank Accession No. AF231953) and C. colhounii STE-U 705 (99%; GenBank Accession No. AF231954), respectively. The morphology, secondary conidiation, and sequences of ITS and β-tubulin gene identify the causal fungus as C. colhounii. To our knowledge, this is the first report of C. colhounii on blueberry in China or in the world. References: (1) P. W. Crous et al. Can. J. Bot. 77:1813, 1999. (2) T. Watanabe. Page 222 in: Dictorial Atlas of Soil and Seed Fungi. CRC Press, Inc., Boca Raton, Fl, 1994.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1228-1228 ◽  
Author(s):  
M. P. You ◽  
V. Lanoiselet ◽  
C. P. Wang ◽  
R. G. Shivas ◽  
Y. P. Li ◽  
...  

Commercial rice crops (Oryza sativa L.) have been recently reintroduced to the Ord River Irrigation Area in northern Western Australia. In early August 2011, unusual leaf spot symptoms were observed by a local rice grower on rice cultivar Quest. A leaf spot symptom initially appeared as grey-green and/or water soaked with a darker green border and then expanded rapidly to several centimeters in length and became light tan in color with a distinct necrotic border. Isolations from typical leaf lesions were made onto water agar, subcultured onto potato dextrose agar, and maintained at 20°C. A representative culture was lodged in the Western Australian Culture Collection Herbarium, Department of Agriculture and Food Western Australia (WAC 13466) and as a herbarium specimen in the Plant Pathology Herbarium, Plant Biosecurity Science (BRIP 54721). Amplification of the internal transcribed spacer (ITS)1 and (ITS)2 regions flanking the 5.8S rRNA gene were carried out with universal primers ITS1 and ITS4 (4). The PCR products were sequenced and BLAST analyses used to compare sequences with those in GenBank. The sequence had 99% nucleotide identity with the corresponding sequence in GenBank for Magnaporthe oryzae B.C. Couch, the causal agent of rice blast, the most important fungal disease of rice worldwide (1). Additional sequencing with the primers Bt1a/Bt1b for the β-tubulin gene, primers ACT-512F/ACT-783R for the actin gene, and primers CAL-228F/CAL-737R for the calmodulin gene showed 100% identity in each case with M. oryzae sequences in GenBank, confirming molecular similarity with other reports, e.g., (1). The relevant sequence information for a representative isolate has been lodged in GenBank (GenBank Accession Nos. JQ911754 for (ITS) 1 and 2; JX014265 for β-tubulin; JX035809 for actin; and JX035808 for calmodulin). Isolates also showed morphological similarity with M. oryzae as described in other reports, e.g., (3). Spores of M. oryzae were produced on rice agar under “black light” at 21°C for 4 weeks. Under 30/28°C (day/night), 14/12 h (light/dark), rice cv. Quest was grown for 7 weeks, and inoculated by spraying a suspension 5 × 105 spores/ml onto foliage until runoff occurred. Inoculated plants were placed under a dark plastic covering for 72 h to maximize humidity levels around leaves, and subsequently maintained under >90% RH conditions. Typical symptoms of rice blast appeared within 14 days of inoculation and were as described above. Infection studies were successfully repeated and M. oryzae was readily reisolated from leaf lesions. No disease symptoms were observed nor was M. oryzae isolated from water-inoculated control rice plants. There have been previous records of rice blast in the Northern Territory (2) and Queensland, Australia (Australian Plant Pest Database), but this is the first report of M. oryzae in Western Australia, where it could potentially be destructive if conditions prove conducive. References: (1) B. C. Couch and L. M. Kohn. Mycologia 94:683, 2002; (2) J. B. Heaton. The Aust. J. Sci. 27:81, 1964; (3) C. V. Subramanian. IMI Descriptions of Fungi and Bacteria No 169, Pyricularia oryzae, 1968; (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, New York, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zikun Zhang ◽  
Jianqiang Zhang ◽  
Wanxia Zhang ◽  
Zhian Kou ◽  
Xinfang Wang ◽  
...  

Angelica sinensis (Oliv) Diels (Umbelliferae) is a popular Chinese herb that is mainly distributed in Gansu Province, China, accounting for more than 90% of the national output and sales. A survey for diseases of A. sinensis in Gansu Province in August 2019 found foliar disease with an incidence of 60 to100%, and severities ranging from 5 to 15%. The disease mainly occurred in late July and August. The initial symptoms included many light brown, small lesions, round or irregular in shape, which gradually increased in size. White mycelia was visible in the lesions. Severely affected leaves became chlorotic, withered and died. In the Angelica planting area in Weiyuan County (33°26′N, 104°02′E) diseased leaves from 20 plants were collected by the five-point sampling method (Zheng et al. 2018), and small samples (4 × 4 mm2) wee cut from the border between diseased and healthy tissue, successively sterilized with 75% ethanol for 30 sec, washed three times with sterilized water and dried on sterilized filter paper, and placed on potato dextrose agar plates. After 5 days at 25°C, five morphologically similar colonies were obtained. Colonies were somewhat round with pink overall and formed abundant fluffy white mycelium in the center. Conidia were solitary, macrospores slender, straight to slightly falcate with 2 to 6 septa, and ranged from 20.0 to 77.6 µm × 2.5 to 3.6 µm (n=50). The microspores were elliptical and ranged from 3.0 to 8.0 µm × 2.5 to 3.0 µm (n=5). The strong pink pigment was observed on the reverse side of the PDA culture. The morphological characteristics were consistent with the description of Fusarium avenaceum (Parikh et al. 2018; Jahedi et al. 2019). To further identify the strains, the internal transcribed spacer (ITS), β-tubulin, translation elongation factor 1α (EF1-α), and RNA polymerase second largest subunit (RPB2) gene regions were amplified with ITS1/ITS4, Bt2a/Bt2b, EF1/EF2, and 5f2/7cr (Glass and Donaldson 1995; O’Donnell et al. 2010; White et al. 1990), respectively. The sequences of the five strains were identical, and that of representative strain K0721 were deposited in GenBank (ITS, MZ389899; TUB2, MZ398139; EF1-α, MZ388462; RPB2, MZ394004). BLAST analysis revealed that the ITS, β-tubulin, EF1-α, and RPB2 sequences were 100% (563/563), 100% (423/423), 99% (643/649), and 99% (930/935) homology, with those of F. avenaceum (KP295511.1, KY475586.1, KU999088.1, and MH582082.1), respectively. A multigene phylogenetic tree was inferred by Maximum likelihood phylogenetic analyses based on the combined data set with ITS, EF1-α and RPB2. The strain K0721 was clustered with F. avenaceum. Pathogenicity tests were performed on five 1-month-old healthy plants in plastic pots (20 cm. diam.) with sterilized soil. Each was sprayed with 50 μl of a conidial suspension (1×104 conidia/mL), and 5 healthy plants were sprayed with sterile water as controls. Small lesions were observed after 5 days at 25℃ in a greenhouse. Symptoms were similar to those observed under field conditions. Control plants remained symptomless. Six isolates were reisolated from infected leaves and all confirmed to be F. avenaceum based on morphological observations and molecular identification. To our knowledge, only Septoria anthrisci has been previously reported as a pathogen of A. sinensis leaf spot (Wang et al. 2018), and this is the first report of F. avenaceum causing this disease. This discovery needs to be considered in developing and implementing disease management programs in A. sinensis production.


Sign in / Sign up

Export Citation Format

Share Document