scholarly journals Root Crown Response to Fungal Root Rot in Phaseolus vulgaris Middle American × Andean Lines

Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3135-3142
Author(s):  
Miranda J. Haus ◽  
Weijia Wang ◽  
Janette L. Jacobs ◽  
Hannah Peplinski ◽  
Martin I. Chilvers ◽  
...  

Fusarium root rot (FRR) is a global limiter of dry bean (Phaseolus vulgaris L.) production. In common bean and other legumes, resistance to FRR is related to both root development and root architecture, providing a breeding strategy for FRR resistance. Here, we describe the relationships between root traits and FRR disease symptoms. Using “shovelomics” techniques, a subset of recombinant inbred lines was phenotyped for root architecture traits and disease symptoms across three Michigan fields, including one field with artificially increased Fusarium brasiliense disease pressure. At the early growth stages, stem diameter, basal root number, and distribution of hypocotyl-borne adventitious roots were all significantly related to FRR disease scores. These results demonstrate that root architecture is a component of resistance to FRR in the field at early growth stages (first expanded trifoliate) complementing previous studies that evaluated root traits at later developmental stages (flowering, pod fill, etc.). Correlation matrices of root traits indicate that resistant and susceptible lines have statistically different root systems and show that basal root number is a key feature in resistant root systems while adventitious root distribution is an important feature in susceptible root systems. Based on the results of this study, selection for increased basal root number, increased adventitious root number, and even distribution of adventitious roots in early growth stages (first expanded trifoliate) would positively impact resistance to FRR.

1969 ◽  
Vol 80 (3) ◽  
pp. 135-143
Author(s):  
Rocío del P. Rodríguez ◽  
Luis Sánchez ◽  
Wigmar González ◽  
Osvaldo Bosques

Stem cankers and root rot of coffee plants were detected in the nurseries. Proliferation of adventitious roots at the base of the stems was also observed. Several fungi were isolated from the root and stem lesions and pathogenicity trials were conducted under the humid conditions of the shadehouse. Typical disease symptoms were reproduced by Myrothecium roridum and Rhizoctonia solani in the root and in the stem of the inoculated plants.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Abdourazak Alio Moussa ◽  
Ajmal Mandozai ◽  
Yukun Jin ◽  
Jing Qu ◽  
Qi Zhang ◽  
...  

Abstract Background Breeding for new maize varieties with propitious root systems has tremendous potential in improving water and nutrients use efficiency and plant adaptation under suboptimal conditions. To date, most of the previously detected root-related trait genes in maize were new without functional verification. In this study, seven seedling root architectural traits were examined at three developmental stages in a recombinant inbred line population (RIL) of 179 RILs and a genome-wide association study (GWAS) panel of 80 elite inbred maize lines through quantitative trait loci (QTL) mapping and genome-wide association study. Results Using inclusive composite interval mapping, 8 QTLs accounting for 6.44–8.83 % of the phenotypic variation in root traits, were detected on chromosomes 1 (qRDWv3-1-1 and qRDW/SDWv3-1-1), 2 (qRBNv1-2-1), 4 (qSUAv1-4-1, qSUAv2-4-1, and qROVv2-4-1), and 10 (qTRLv1-10-1, qRBNv1-10-1). GWAS analysis involved three models (EMMAX, FarmCPU, and MLM) for a set of 1,490,007 high-quality single nucleotide polymorphisms (SNPs) obtained via whole genome next-generation sequencing (NGS). Overall, 53 significant SNPs with a phenotypic contribution rate ranging from 5.10 to 30.2 % and spread all over the ten maize chromosomes exhibited associations with the seven root traits. 17 SNPs were repeatedly detected from at least two growth stages, with several SNPs associated with multiple traits stably identified at all evaluated stages. Within the average linkage disequilibrium (LD) distance of 5.2 kb for the significant SNPs, 46 candidate genes harboring substantial SNPs were identified. Five potential genes viz. Zm00001d038676, Zm00001d015379, Zm00001d018496, Zm00001d050783, and Zm00001d017751 were verified for expression levels using maize accessions with extreme root branching differences from the GWAS panel and the RIL population. The results showed significantly (P < 0.001) different expression levels between the outer materials in both panels and at all considered growth stages. Conclusions This study provides a key reference for uncovering the complex genetic mechanism of root development and genetic enhancement of maize root system architecture, thus supporting the breeding of high-yielding maize varieties with propitious root systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vijaya Singh ◽  
Michael Bell

Selection for root system architectures (RSA) to match target growing environments can improve yields through better adaptation to water and nutrient-limiting conditions in grain legume crops such as mungbean. In this study, the architectural development of root systems in four contrasting mungbean varieties was studied over time to explore their relationships to above-ground growth and development. Key findings suggested that early maturing mungbean varieties were characterized by more rapid root elongation rates and leaf area development, resulting in more vigorous root and shoot growth during early growth stages compared with a late maturing variety. The early maturing varieties also showed root morphological traits generally adapted to water-limited environments, such as deeper, longer and lighter roots. Early maturing varieties more rapidly colonized the top 10–20 cm of the soil profile during early growth stages, whereas the later maturing variety developed less prolific but 20–50% thicker roots in the same profile layers in later stages of crop growth. The diversity of root characteristics identified in these commercial varieties suggests that there are opportunities to combine desirable root traits with maturity types to target different production environments. Examples include deeper, longer, and thinner roots for crops to exploit deep profile reserves of water and nutrients, and thicker and shallower root systems for crops grown in shallow soils with stratified nutrient reserves and/or more favorable in-season rainfall.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abigail R. Huster ◽  
Lyle T. Wallace ◽  
James R. Myers

Root rot is a major constraint to snap bean (Phaseolus vulgaris) production in the United States and around the world. Genetic resistance is needed to effectively control root rot disease because cultural control methods are ineffective, and the pathogen will be present at the end of one season of production on previously clean land. A diversity panel of 149 snap bean pure lines was evaluated for resistance to Fusarium root rot in Oregon. Morphological traits potentially associated with root rot resistance, such as aboveground biomass, adventitious roots, taproot diameter, basal root diameter, deepest root angle, shallowest root angle, root angle average, root angle difference, and root angle geometric mean were evaluated and correlated to disease severity. A genome wide association study (GWAS) using the Fixed and random model Circulating Probability Unification (FarmCPU) statistical method, identified five associated single nucleotide polymorphisms (SNPs) for disease severity and two SNPs for biomass. The SNPs were found on Pv03, Pv07, Pv08, Pv10, and Pv11. One candidate gene for disease reaction near a SNP on Pv03 codes for a peroxidase, and two candidates associated with biomass SNPs were a 2-alkenal reductase gene cluster on Pv10 and a Pentatricopeptide repeat domain on Pv11. Bean lines utilized in the study were ranked by genomic estimated breeding values (GEBV) for disease severity, biomass, and the root architecture traits, and the observed and predicted values had high to moderate correlations. Cross validation of genomic predictions showed slightly lower correlational accuracy. Bean lines with the highest GEBV were among the most resistant, but did not necessarily rank at the very top numerically. This study provides information on the relationship of root architecture traits to root rot disease reaction. Snap bean lines with genetic merit for genomic selection were identified and may be utilized in future breeding efforts.


2020 ◽  
Vol 71 (19) ◽  
pp. 5752-5763
Author(s):  
Frederik J T van der Bom ◽  
Alwyn Williams ◽  
Michael J Bell

Abstract Root architecture is a promising breeding target for developing resource-efficient crops. Breeders and plant physiologists have called for root ideotypes that have narrow, deep root systems for improved water and nitrate capture, or wide, shallower root systems for better uptake of less mobile topsoil nutrients such as phosphorus. Yet evidence of relationships between root architecture and crop yield is limited. Many studies focus on the response to a single constraint, despite the fact that crops are frequently exposed to multiple soil constraints. For example, in dryland soils under no-till management, topsoil nutrient stratification is an emergent profile characteristic, leading to spatial separation of water and nutrients as the soil profile dries. This results in spatio-temporal trade-offs between efficient resource capture and pre-defined root ideotypes developed to counter a single constraint. We believe there is need to identify and better understand trade-offs involved in the efficient capture of multiple, spatially disjunct soil resources. Additionally, how these trade-offs interact with genotype (root architecture), environment (soil constraints), and management (agronomy) are critical unknowns. We argue that identifying root traits that enable efficient capture of multiple soil resources under fluctuating environmental constraints is a key step towards meeting the challenges of global food security.


2019 ◽  
Author(s):  
Félicien Meunier ◽  
Adrien Heymans ◽  
Xavier Draye ◽  
Valentin Couvreur ◽  
Mathieu Javaux ◽  
...  

AbstractFunctional-structural root system models combine functional and structural root traits to represent the growth and development of root systems. In general, they are characterized by a large number of growth, architectural and functional root parameters, generating contrasted root systems evolving in a highly nonlinear environment (soil, atmosphere), which makes unclear what impact of each single root system on root system functioning actually is. On the other end of the root system modelling continuum, macroscopic root system models associate to each root system instance a set of plant-scale, easily interpretable parameters. However, as of today, it is unclear how these macroscopic parameters relate to root-scale traits and whether the upscaling of local root traits are compatible with macroscopic parameter measurements. The aim of this study was to bridge the gap between these two modelling approaches by providing a fast and reliable tool, which eventually can help performing plant virtual breeding.We describe here the MAize Root System Hydraulic Architecture soLver (MARSHAL), a new efficient and user-friendly computational tool that couples a root architecture model (CRootBox) with fast and accurate algorithms of water flow through hydraulic architectures and plant-scale parameter calculations, and a review of architectural and hydraulic parameters of maize.To illustrate the tool’s potential, we generated contrasted maize hydraulic architectures that we compared with architectural (root length density) and hydraulic (root system conductance) observations. Observed variability of these traits was well captured by model ensemble runs We also analyzed the multivariate sensitivity of mature root system conductance, mean depth of uptake, root system volume and convex hull to the input parameters to highlight the key parameters to vary for efficient virtual root system breeding. MARSHAL enables inverse optimisations, sensitivity analyses and virtual breeding of maize hydraulic root architecture. It is available as an R package, an RMarkdown pipeline, and a web application.One-sentence summaryWe developed a dynamic hydraulic-architectural model of the root system, parameterized for maize, to generate contrasted hydraulic architectures, compatible with field and lab observations and that can be further analyzed in soil-root system models for virtual breeding.Authors contributionsF.M., X.D., M.J. and G.L. designed the study and defined its scope; F.M. and G.L. developed the model while associated tools were created by A.H. and G.L.; F.M. ran the model simulations and analyzed the results together with M.J and G.L.; F.M. and M.J. wrote the first version of this manuscript; all co-authors critically revised it.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 212
Author(s):  
Kanwal Shazadi ◽  
Karine Chenu ◽  
Jack Christopher

Root systems play an important role in crop performance particularly under rain fed conditions. Root architecture is key in determining the ability of crops to extract water at various soil depths. In many rain fed production regions, opportunities to improve yield through changes in management practices are limited. Thus, genetic solutions to improve yield under water limitation are required. We postulate that in drought-prone environments, genotypes with greater yield and yield stability can be developed by breeding for genotypes with favorable root systems. We studied wheat root architecture late in the developmental cycle. Narrow and deep root systems may help wheat to extract more water at depth late in the season and give an advantage to yield and yield stability where crops rely on stored moisture deep in the soil. To improve yield stability in rain fed regions, an effective phenotypic method is needed. However, studying root traits in mature field-grown crops is extremely challenging. A PVC tube method was developed and has been used to identify genotypic differences in root architecture late in crop development. Identification of root traits to improve deep water uptake late in crop development and the development of phenotypic methods to identify genetic sources of such traits will assist breeders to improve yield and yield stability in water-limited environments.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1359
Author(s):  
Piotr Borowik ◽  
Tomasz Oszako ◽  
Tadeusz Malewski ◽  
Zuzanna Zwierzyńska ◽  
Leszek Adamowicz ◽  
...  

Ash shoot dieback has now spread throughout Europe. It is caused by an interaction between fungi that attack shoots (Hymenoscyphus fraxineus) and roots (Armillaria spp., in our case Armillaria gallica). While detection of the pathogen is relatively easy when disease symptoms are present, it is virtually impossible when the infestation is latent. Such situations occur in nurseries when seedlings become infected (the spores are carried by the wind several dozen miles). The diseases are masked by pesticides, fertilisers, and adequate irrigation to protect the plants. Root rot that develops in the soil is also difficult to detect. Currently, there is a lack of equipment that can detect root rot pathogens without digging up root systems, which risks damaging trees. For this reason, the use of an electronic nose to detect pathogens in infected tissue of ash trees grown in pots and inoculated with the above fungi was attempted. Disease symptoms were detected in all ash trees exposed to natural infection (via spores) in the forest. The electronic nose was able to detect the pathogens (compared to the control). Detection of the pathogens in seedlings will enable foresters to remove diseased trees and prevent the path from nursery to forest plantations by such selection.


Sign in / Sign up

Export Citation Format

Share Document