scholarly journals Characterizing Genetic Variation in Late, Deep Wheat Root Architecture to Improve Yield and Yield Stability under Terminal Water Stress

Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 212
Author(s):  
Kanwal Shazadi ◽  
Karine Chenu ◽  
Jack Christopher

Root systems play an important role in crop performance particularly under rain fed conditions. Root architecture is key in determining the ability of crops to extract water at various soil depths. In many rain fed production regions, opportunities to improve yield through changes in management practices are limited. Thus, genetic solutions to improve yield under water limitation are required. We postulate that in drought-prone environments, genotypes with greater yield and yield stability can be developed by breeding for genotypes with favorable root systems. We studied wheat root architecture late in the developmental cycle. Narrow and deep root systems may help wheat to extract more water at depth late in the season and give an advantage to yield and yield stability where crops rely on stored moisture deep in the soil. To improve yield stability in rain fed regions, an effective phenotypic method is needed. However, studying root traits in mature field-grown crops is extremely challenging. A PVC tube method was developed and has been used to identify genotypic differences in root architecture late in crop development. Identification of root traits to improve deep water uptake late in crop development and the development of phenotypic methods to identify genetic sources of such traits will assist breeders to improve yield and yield stability in water-limited environments.

Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3135-3142
Author(s):  
Miranda J. Haus ◽  
Weijia Wang ◽  
Janette L. Jacobs ◽  
Hannah Peplinski ◽  
Martin I. Chilvers ◽  
...  

Fusarium root rot (FRR) is a global limiter of dry bean (Phaseolus vulgaris L.) production. In common bean and other legumes, resistance to FRR is related to both root development and root architecture, providing a breeding strategy for FRR resistance. Here, we describe the relationships between root traits and FRR disease symptoms. Using “shovelomics” techniques, a subset of recombinant inbred lines was phenotyped for root architecture traits and disease symptoms across three Michigan fields, including one field with artificially increased Fusarium brasiliense disease pressure. At the early growth stages, stem diameter, basal root number, and distribution of hypocotyl-borne adventitious roots were all significantly related to FRR disease scores. These results demonstrate that root architecture is a component of resistance to FRR in the field at early growth stages (first expanded trifoliate) complementing previous studies that evaluated root traits at later developmental stages (flowering, pod fill, etc.). Correlation matrices of root traits indicate that resistant and susceptible lines have statistically different root systems and show that basal root number is a key feature in resistant root systems while adventitious root distribution is an important feature in susceptible root systems. Based on the results of this study, selection for increased basal root number, increased adventitious root number, and even distribution of adventitious roots in early growth stages (first expanded trifoliate) would positively impact resistance to FRR.


2020 ◽  
Vol 71 (19) ◽  
pp. 5752-5763
Author(s):  
Frederik J T van der Bom ◽  
Alwyn Williams ◽  
Michael J Bell

Abstract Root architecture is a promising breeding target for developing resource-efficient crops. Breeders and plant physiologists have called for root ideotypes that have narrow, deep root systems for improved water and nitrate capture, or wide, shallower root systems for better uptake of less mobile topsoil nutrients such as phosphorus. Yet evidence of relationships between root architecture and crop yield is limited. Many studies focus on the response to a single constraint, despite the fact that crops are frequently exposed to multiple soil constraints. For example, in dryland soils under no-till management, topsoil nutrient stratification is an emergent profile characteristic, leading to spatial separation of water and nutrients as the soil profile dries. This results in spatio-temporal trade-offs between efficient resource capture and pre-defined root ideotypes developed to counter a single constraint. We believe there is need to identify and better understand trade-offs involved in the efficient capture of multiple, spatially disjunct soil resources. Additionally, how these trade-offs interact with genotype (root architecture), environment (soil constraints), and management (agronomy) are critical unknowns. We argue that identifying root traits that enable efficient capture of multiple soil resources under fluctuating environmental constraints is a key step towards meeting the challenges of global food security.


2020 ◽  
Author(s):  
P. De Bauw ◽  
J. A. Ramarolahy ◽  
K. Senthilkumar ◽  
T. Rakotoson ◽  
R. Merckx ◽  
...  

AbstractBackgroundBreeding towards resilient rice varieties is often constrained by the limited data on root system architecture obtained from relevant agricultural environments. Knowledge on the genotypic differences and responses of root architecture to environmental factors is limited due the difficulty of analysing soil-grown rice roots. An improved method using imaging is thus needed, but the existing methods were never proven successful for rice. Here, we aimed to evaluate and improve a higher throughput method of image-based root phenotyping for rice grown under field conditions. Rice root systems from seven experiments were phenotyped based on the “shovelomics” method of root system excavation followed by manual root phenotyping and digital root analysis after root imaging. Analyzed traits were compared between manual and image-based root phenotyping systems using Spearman rank correlations to evaluate whether both methods similarly rank the phenotypes. For each trait, the relative phenotypic variation was calculated. A principal component analysis was then conducted to assess patterns in root architectural variation.ResultsSeveral manually collected and image-based root traits were identified as having a high potential of differentiating among contrasting phenotypes, while other traits are found to be inaccurate and thus unreliable for rice. The image-based traits projected area, root tip thickness, stem diameter, and root system depth successfully replace the manual determination of root characteristics, however attention should be paid to the lower accuracy of the image-based methodology, especially when working with older and larger root systems.ConclusionsThe challenges and opportunities of rice root phenotyping in field conditions are discussed for both methods. We therefore propose an integrated protocol adjusted to the complexity of the rice root structure combining image analysis in a water bath and the manual scoring of three traits (i.e. lateral density, secondary branching degree, and nodal root thickness at the root base). The proposed methodology ensures higher throughput and enhanced accuracy during root phenotyping of soil grown rice in fields or pots compared to manual scoring only, it is cheap to develop and operate, it is valid in remote environments, and it enables fast data extraction.


2019 ◽  
Author(s):  
Félicien Meunier ◽  
Adrien Heymans ◽  
Xavier Draye ◽  
Valentin Couvreur ◽  
Mathieu Javaux ◽  
...  

AbstractFunctional-structural root system models combine functional and structural root traits to represent the growth and development of root systems. In general, they are characterized by a large number of growth, architectural and functional root parameters, generating contrasted root systems evolving in a highly nonlinear environment (soil, atmosphere), which makes unclear what impact of each single root system on root system functioning actually is. On the other end of the root system modelling continuum, macroscopic root system models associate to each root system instance a set of plant-scale, easily interpretable parameters. However, as of today, it is unclear how these macroscopic parameters relate to root-scale traits and whether the upscaling of local root traits are compatible with macroscopic parameter measurements. The aim of this study was to bridge the gap between these two modelling approaches by providing a fast and reliable tool, which eventually can help performing plant virtual breeding.We describe here the MAize Root System Hydraulic Architecture soLver (MARSHAL), a new efficient and user-friendly computational tool that couples a root architecture model (CRootBox) with fast and accurate algorithms of water flow through hydraulic architectures and plant-scale parameter calculations, and a review of architectural and hydraulic parameters of maize.To illustrate the tool’s potential, we generated contrasted maize hydraulic architectures that we compared with architectural (root length density) and hydraulic (root system conductance) observations. Observed variability of these traits was well captured by model ensemble runs We also analyzed the multivariate sensitivity of mature root system conductance, mean depth of uptake, root system volume and convex hull to the input parameters to highlight the key parameters to vary for efficient virtual root system breeding. MARSHAL enables inverse optimisations, sensitivity analyses and virtual breeding of maize hydraulic root architecture. It is available as an R package, an RMarkdown pipeline, and a web application.One-sentence summaryWe developed a dynamic hydraulic-architectural model of the root system, parameterized for maize, to generate contrasted hydraulic architectures, compatible with field and lab observations and that can be further analyzed in soil-root system models for virtual breeding.Authors contributionsF.M., X.D., M.J. and G.L. designed the study and defined its scope; F.M. and G.L. developed the model while associated tools were created by A.H. and G.L.; F.M. ran the model simulations and analyzed the results together with M.J and G.L.; F.M. and M.J. wrote the first version of this manuscript; all co-authors critically revised it.


2010 ◽  
Vol 36 (4) ◽  
pp. 149-159
Author(s):  
Susan Day ◽  
P. Eric Wiseman ◽  
Sarah Dickinson ◽  
J. Roger Harris

Knowledge of the extent and distribution of tree root systems is essential for managing trees in the built environment. Despite recent advances in root detection tools, published research on tree root architecture in urban settings has been limited and only partially synthesized. Root growth patterns of urban trees may differ considerably from similar species in forested or agricultural environments. This paper reviews literature documenting tree root growth in urban settings as well as literature addressing root architecture in nonurban settings that may contribute to present understanding of tree roots in built environments. Although tree species may have the genetic potential for generating deep root systems (>2 m), rooting depth in urban situations is frequently restricted by impenetrable or inhospitable soil layers or by underground infrastructure. Lateral root extent is likewise subject to restriction by dense soils under hardscape or by absence of irrigation in dry areas. By combining results of numerous studies, the authors of this paper estimated the radius of an unrestricted root system initially increases at a rate of approximately 38 to 1, compared to trunk diameter; however, this ratio likely considerably declines as trees mature. Roots are often irregularly distributed around the tree and may be influenced by cardinal direction, terrain, tree lean, or obstacles in the built environment. Buttress roots, tap roots, and other root types are also discussed.


2018 ◽  
Author(s):  
Larry M. York ◽  
Shaunagh Slack ◽  
Malcolm J Bennett ◽  
M John Foulkes

AbstractWheat represents a major crop, yet the current rate of yield improvement is insufficient to meet its projected global food demand. Breeding root systems more efficient for water and nitrogen capture represents a promising avenue for accelerating yield gains. Root crown phenotyping, or shovelomics, relies on excavation of the upper portions of root systems in the field and measuring root properties such as numbers, angles, densities and lengths. We report a new shovelomics method that images the whole wheat root crown, then partitions it into the main shoot and tillers for more intensive phenotyping. Root crowns were phenotyped using the new method from the Rialto × Savannah population consisting of both parents and 94 doubled-haploid lines. For the whole root crown, the main shoot, and tillers, root phenes including nodal root number, growth angle, length, and diameter were measured. Substantial variation and heritability were observed for all phenes. Principal component analysis revealed latent constructs that imply pleiotropic genetic control of several related root phenes. Correlational analysis revealed that nodal root number and growth angle correlate among the whole crown, main shoot, and tillers, indicating shared genetic control among those organs. We conclude that this phenomics approach will be useful for breeding ideotype root systems in tillering species.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Félicien Meunier ◽  
Adrien Heymans ◽  
Xavier Draye ◽  
Valentin Couvreur ◽  
Mathieu Javaux ◽  
...  

Abstract Functional-structural root system models combine functional and structural root traits to represent the growth and development of root systems. In general, they are characterized by a large number of growth, architectural and functional root parameters, generating contrasted root systems evolving in a highly non-linear environment (soil, atmosphere), which makes the link between local traits and functioning unclear. On the other end of the root system modelling continuum, macroscopic root system models associate to each root system a set of plant-scale, easily interpretable parameters. However, as of today, it is unclear how these macroscopic parameters relate to root-scale traits and whether the upscaling of local root traits is compatible with macroscopic parameter measurements. The aim of this study was to bridge the gap between these two modelling approaches. We describe here the MAize Root System Hydraulic Architecture soLver (MARSHAL), a new efficient and user-friendly computational tool that couples a root architecture model (CRootBox) with fast and accurate algorithms of water flow through hydraulic architectures and plant-scale parameter calculations. To illustrate the tool’s potential, we generated contrasted maize hydraulic architectures that we compared with root system architectural and hydraulic observations. Observed variability of these traits was well captured by model ensemble runs. We also analysed the multivariate sensitivity of mature root system conductance, mean depth of uptake, root system volume and convex hull to the input parameters to highlight the key model parameters to vary for virtual breeding. It is available as an R package, an RMarkdown pipeline and a web application.


2020 ◽  
Vol 158 (1-2) ◽  
pp. 65-79
Author(s):  
J. Macholdt ◽  
H.-P. Piepho ◽  
B. Honermeier ◽  
S. Perryman ◽  
A. Macdonald ◽  
...  

AbstractThe development of resilient cropping systems with high yield stability is becoming increasingly important due to future climatic and agronomic challenges. Consequently, it is essential to compare the effects of different agronomic management practices, such as cropping sequences and nutrient supply, on the stability of crop yields. Long-term experiments are a valuable resource for investigating these effects, as they provide enough time to accurately estimate stability parameters. The objective of the current study was to compare the effects of different cropping sequencing (#1: continuous v. rotational), fertilization (#2: mineral v. organic) and straw management techniques (in the case of continuous wheat; #3: removal v. incorporation) on the yield stability of winter wheat; yield risk (the probability of yield falling below a threshold yield level) and inter-annual yield variability were used as stability indicators of the effects. Long-term yield data from the Broadbalk Wheat Experiment (Rothamsted, UK) were analysed using a mixed model. Overall, the results showed that rotational cropping combined with sufficient mineral N fertilizer, with or without organic manure, ensured stable wheat yields while reducing yield risk. In contrast, higher yield risks and inter-annual yield variabilities were found in continuous wheat sections with less mineral N fertilizer or with organic manure only.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yinglong Chen ◽  
Jairo Palta ◽  
P. V. Vara Prasad ◽  
Kadambot H. M. Siddique

Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Paulo Henrique Ramos Guimarães ◽  
Isabela Pereira de Lima ◽  
Adriano Pereira de Castro ◽  
Anna Cristina Lanna ◽  
Patrícia Guimarães Santos Melo ◽  
...  

Abstract Background The root system plays a major role in plant growth and development and root system architecture is reported to be the main trait related to plant adaptation to drought. However, phenotyping root systems in situ is not suited to high-throughput methods, leading to the development of non-destructive methods for evaluations in more or less controlled root environments. This study used a root phenotyping platform with a panel of 20 japonica rice accessions in order to: (i) assess their genetic diversity for a set of structural and morphological root traits and classify the different types; (ii) analyze the plastic response of their root system to a water deficit at reproductive phase and (iii) explore the ability of the platform for high-throughput phenotyping of root structure and morphology. Results High variability for the studied root traits was found in the reduced set of accessions. Using eight selected traits under irrigated conditions, five root clusters were found that differed in root thickness, branching index and the pattern of fine and thick root distribution along the profile. When water deficit occurred at reproductive phase, some accessions significantly reduced root growth compared to the irrigated treatment, while others stimulated it. It was found that root cluster, as defined under irrigated conditions, could not predict the plastic response of roots under drought. Conclusions This study revealed the possibility of reconstructing the structure of root systems from scanned images. It was thus possible to significantly class root systems according to simple structural traits, opening up the way for using such a platform for medium to high-throughput phenotyping. The study also highlighted the uncoupling between root structures under non-limiting water conditions and their response to drought.


Sign in / Sign up

Export Citation Format

Share Document