scholarly journals Evaluation of Nonpathogenic Fusarium oxysporum and Pseudomonas fluorescens for Panama Disease Control

Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 951-959 ◽  
Author(s):  
A. Belgrove ◽  
C. Steinberg ◽  
A. Viljoen

Nonpathogenic Fusarium oxysporum endophytes from healthy banana roots were evaluated for their ability to reduce Fusarium wilt of banana (Panama disease). Isolates were identified morphologically and by using species-specific primers. Pathogenicity was confirmed by inoculating banana plantlets in the greenhouse. Nonpathogenic F. oxysporum isolates were grouped into 14 haplotype groups by polymerase chain reaction restriction fragment length polymorphism analysis of the intergenic spacer region, and representative isolates evaluated for biocontrol of F. oxysporum f. sp. cubense. In the greenhouse, 10 nonpathogenic F. oxysporum isolates were able to significantly reduce Fusarium wilt of banana. The isolate that protected banana plantlets best in the greenhouse, a nonpathogenic F. oxysporum from the root rhizosphere, and Pseudomonas fluorescens WCS 417 were then field tested. When the putative biological control organisms were tested in the field, neither the nonpathogenic F. oxysporum, P. fluorescens, nor combinations thereof reduced Fusarium wilt development significantly. A number of factors could contribute to the lack of field protection, including soil microbial and chemical composition and reduced survival of biocontrol organisms in banana roots. A lack of knowledge regarding the etiology of Fusarium wilt of ‘Cavendish’ banana in the subtropics and the effect of F. oxysporum f. sp. cubense race and banana cultivar in protection of banana by biocontrol organisms should be further investigated.

Plant Disease ◽  
2018 ◽  
Vol 102 (3) ◽  
pp. 552-560 ◽  
Author(s):  
Patrick Karangwa ◽  
Diane Mostert ◽  
Privat Ndayihanzamaso ◽  
Thomas Dubois ◽  
Björn Niere ◽  
...  

Banana Fusarium wilt is a major production constraint globally and a significant threat to the livelihoods of millions of people in East and Central Africa (ECA). A proper understanding of the diversity and population dynamics of the causal agent, Fusarium oxysporum f. sp. cubense (Foc), could be useful for the development of sustainable disease management strategies for the pathogen. The current study investigated the diversity of Foc in ECA using vegetative compatibility group (VCG) analysis, PCR-RFLPs of the ribosomal DNA’s intergenic spacer region, as well as phylogenetic analysis of the elongation factor-1α gene. Six VCGs (0124, 0125, 0128, 01212, 01220, and 01222), which all belong to one lineage (Foc lineage VI), were widely distributed throughout the region. VCGs 0128 and 01220 are reported for the first time in Burundi, the Democratic Republic of Congo (DRC), Rwanda, Tanzania, and Uganda, while VCG 01212 is reported in the DRC and Rwanda. Isolates that did not belong to any of the known VCGs were identified as Foc lineage VI members by phylogenetic analysis and may represent novel VCGs. CAV 2734, a banana pathogen collected in Rwanda, clustered with nonpathogenic F. oxysporum isolates in lineage VIII. Results from this study will contribute significantly toward the implementation of banana Fusarium wilt disease management practices in the region, such as the restricted movement of infected planting material and the selective planting of resistant banana varieties.


2006 ◽  
Vol 96 (6) ◽  
pp. 653-656 ◽  
Author(s):  
Randy C. Ploetz

Fusarium wilt of banana (also known as Panama disease) is caused by Fusarium oxysporum f. sp. cubense. Where susceptible cultivars are grown, management is limited to the use of pathogen-free planting stock and clean soils. Resistant genotypes exist for some applications, but resistance is still needed in other situations. Progress has been made with this recalcitrant crop by traditional and nontraditional improvement programs. The disease was first reported in Australia in 1876, but did the greatest damage in export plantations in the western tropics before 1960. A new variant, tropical race 4, threatens the trades that are now based on Cavendish cultivars, and other locally important types such as the plantains. Phylogenetic studies indicate that F. oxysporum f. sp. cubense had several independent evolutionary origins. The significance of these results and the future impact of this disease are discussed.


2015 ◽  
Vol 105 (12) ◽  
pp. 1512-1521 ◽  
Author(s):  
Randy C. Ploetz

Banana (Musa spp.) is one of the world’s most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the ‘Gros Michel’-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a ‘Cavendish’-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1811-1816
Author(s):  
Kelley R. Paugh ◽  
Thomas R. Gordon

Fusarium wilt of lettuce, caused by Fusarium oxysporum f. sp. lactucae, is now found in all major lettuce producing regions in California and Arizona. The population structure of F. oxysporum f. sp. lactucae in California and Arizona was characterized based on somatic compatibility and sequences of the translation elongation factor 1-α gene (EF-1α) and rDNA intergenic spacer region (IGS). In this study, 170 isolates were tested for somatic compatibility based on heterokaryon formation, using complementary nitrate nonutilizing (nit) mutants. Five subgroups (A to E) of somatic compatibility group 0300 were identified. Isolates associated with the same subgroup had a strong complementation reaction, whereas reactions between isolates of different subgroups were weak or delayed. An isolate from the first known infestation of Fusarium wilt of lettuce in California was associated with subgroup A, which predominated among isolates in our collection. Isolates representative of each subgroup were confirmed to be associated with race 1, based on the reaction of differential lettuce cultivars. It is possible that somatic compatibility subgroups B to E of F. oxysporum f. sp. lactucae were derived from subgroup A, as a consequence of somatic mutations affecting compatibility. If so, subgroups of F. oxysporum f. sp. lactucae may represent an intermediate step in divergence that will lead to clearly separable compatibility groups. Sequences of EF-1α and IGS were both identical for 58 isolates of F. oxysporum f. sp. lactucae that represented all somatic compatibility subgroups and locations from which isolates were obtained, indicating that subgroups were derived from the same clonal lineage (VCG 0300).


Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2066-2072 ◽  
Author(s):  
A. M. Pastrana ◽  
S. C. Kirkpatrick ◽  
M. Kong ◽  
J. C. Broome ◽  
T. R. Gordon

Fusarium oxysporum has recently been identified as the cause of a wilt disease affecting blackberry in California and Mexico. Thirty-six isolates of F. oxysporum obtained from symptomatic blackberry plants in California and Mexico were comprised of nine distinct somatic compatibility groups (SCGs). Phylogenetic analysis of a concatenated data set, consisting of sequences of the translation elongation factor 1-α and β-tubulin genes and the intergenic spacer of the ribosomal DNA, identified nine three-locus sequence types, each of which corresponded to an SCG. Six SCGs were present only in California, two only in Mexico, and one in both California and Mexico. An isolate associated with the most common SCG in California was tested for pathogenicity on blueberry, raspberry, strawberry, and lettuce. All blueberry, raspberry, and lettuce plants that were inoculated remained healthy, but two of the five strawberry cultivars tested developed symptoms. The three strawberry cultivars that were resistant to the blackberry pathogen were also resistant to F. oxysporum f. sp. fragariae, the cause of Fusarium wilt of strawberry. We propose to designate strains of F. oxysporum that are pathogenic to blackberry as Fusarium oxysporum f. sp. mori forma specialis nov.


2002 ◽  
Vol 157 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Pasquapina Ciarmela ◽  
Lucia Potenza ◽  
Luigi Cucchiarini ◽  
Sabrina Zeppa ◽  
Vilberto Stocchi

2013 ◽  
Vol 295-298 ◽  
pp. 2274-2280 ◽  
Author(s):  
Xiao Deng ◽  
Qin Fen Li ◽  
Xian Wen Hou ◽  
Chun Yuan Wu

Thirty rhizosphere and non-rhizosphere soil samples from different infection grades(0, I, III, V and VII) of three typical banana plots(Jianfeng, Shiyuetian, Chongpo) infected by banana fusarium wilt (Fusarium oxysporum f. sp. cubense) in Hainan province were collected to study the microbial community functional diversity applying Biolog-ECO microplates technology. The results are as follows: (1) Overall carbon source metabolic capacities of soil microbial community weaken with increasing of infection grades of banana fusarium wilt. (2) Richness indices, Simpson indices, Shannon indices and McIntosh indices of soil microbial community gradually decreased with increasing of infection grades of banana fusarium wilt. (3) Principal component analysis show that metabolic characteristics of soil microbial community significantly change between the healthy plants and diseased plants in the same banana plot. The results would provide information for explaining the pathogenesis of banana fusarium wilt and controlling its incidence by applying microbial ecology to regulate soil environmental measures.


Sign in / Sign up

Export Citation Format

Share Document