Occurrence and Detection of Carbendazim-Resistance in Botryosphaeria dothidea from apple orchards in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Li Wang ◽  
Hongtao Tu ◽  
Hui Hou ◽  
Zengqiang Zhou ◽  
Hongbo Yuan ◽  
...  

Botryosphaeria dothidea causes white rot, which is among the most devastating diseases affecting apple crops globally. In this paper, we assessed B. dothidea resistance to carbendazim by collecting samples from warts on the infected branches of apple trees or from fruits exhibiting evidence of white rot. All samples were collected from different orchards of nine provinces of China in 2018 and 2019. In total 440 B. dothidea isolates were evaluated, of which 19 isolates from three provinces were found to exhibit carbendazim-resistance. We additionally explored the fitness and resistance stability of these isolates, revealing that they were no less fit than carbendazim-sensitive isolates in terms of pathogenicity, sporulation, and mycelial growth and that the observed carbendazim resistance was stable. Sequencing of the β-tubulin gene in carbendazim-resistant isolates showed the presence of a substitution at codon 198 (GAG to GCG) that result in an alanine substitution in place of glutamic acid (E198A) in all 19 resistant isolates. A LAMP method was then developed to rapidly and specifically identify this E198A mutation. This LAMP method offers value as a tool for rapidly detecting carbendazim-resistant isolates bearing this E198A mutation, and can thus be used for the widespread monitoring of apple crops to detect and control the development of such resistance

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 401
Author(s):  
Li Wang ◽  
Hui Hou ◽  
Zengqiang Zhou ◽  
Hongtao Tu ◽  
Hongbo Yuan

Kiwifruit is very popular among consumers due to its high nutritional value. The increasing expansion in kiwifruit cultivation has led to the spread of rot diseases. To identify the pathogens causing kiwifruit ripe rots in China, 24 isolates were isolated from the diseased fruit and wart in trees. Botryosphaeria dothidea was recognized as the pathogen causing kiwifruit ripe rot and wart in the tree through internal transcribed spacer (ITS) sequencing, pathogenicity testing, morphological and microscopic characteristics. The rapid and accurate detection of this pathogen will lead to better disease monitoring and control efforts. A loop-mediated isothermal amplification (LAMP) method was then developed to rapidly and specifically identify B. dothidea. These results offer value to further research into kiwifruit ripe rot, such as disease prediction, pathogen rapid detection, and effective disease control.


2017 ◽  
Vol 9 (3) ◽  
pp. 1434-1439
Author(s):  
Kishor Sharma ◽  
Harender Raj

The present study was conducted to determine inhibitory effect of plant extracts, their botanical formula-tions (BF1 and BF2) and safer fungicides against Botryosphaeria dothidea cause white rot of apple (Malus × domes-tica) during storage. Poisoned food technique was performed to evaluate the efficacy of different plant extracts, their botanical formulations and safer fungicides. Out of twelve botanicals evaluated under in vitro conditions against the white rot pathogen, leaf extract of Ocimum sanctum was found most effective among all the treatments with 54.07 per cent average inhibition in mycelial growth. Out of twelve plants evaluated for their efficacy, six effective plants Karu (Roylea elegans), Artemisia (Artemisia roxburghiana), Neem (Azadirachta indica), Bana (Vitex negundo), Tulsi (Ocimum sanctum) and Darek (Melia azedarach) were selected for making two botanical formulations (BF1 and BF2). While, BF1 was water based formulation and BF2 was cow urine based formulation. Among these botanical formulations, BF2 inhibited mycelial growth of white rot pathogen by 72.70 per cent and BF1 66.37 per cent at 100 % concentration. Whereas, among the tested fungicides, Score at 100 ppm concentration was found to be most effective with 75.01 % average inhibition in mycelial growth of the white rot pathogen.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1659-1659 ◽  
Author(s):  
M. Vasić ◽  
N. Duduk ◽  
I. Vico ◽  
M. S. Ivanović

Botryosphaeria dothidea (Moug.: Fr.) Ces. & De Not has a worldwide distribution infecting species from over 80 genera of plants (1). Apart from being an important pathogen of apple trees in many countries, B. dothidea can cause pre- and postharvest decay on apple fruit (2). It has been known to cause canker and dieback of forest trees in Serbia (3), but has not been recorded either on apple trees or apple fruit. In December 2010, apple fruit cv. Idared (Malus × domestica Borkh.) with symptoms of white rot were collected from one storage in the area of Svilajnac in Serbia. The incidence of the disease was low but the symptoms were severe. Affected fruit were brown, soft, and almost completely decayed, while the internal decayed tissue appeared watery and brown. A fungus was isolated from symptomatic tissue of one fruit after surface sterilization with 70% ethanol (without rinsing) and aseptic removal of the skin. Small fragments of decayed tissue were placed on potato dextrose agar (PDA) and incubated in a chamber at 22°C under alternating light and dark conditions (12/12 h). Fungal colonies were initially whitish, but started turning dark gray to black after 5 to 6 days. Pycnidia were produced after 20 to 25 days of incubation at 22°C and contained one-celled, elliptical, hyaline conidia. Conidia were 17.19 to 23.74 μm (mean 18.93) × 3.72 to 4.93 μm (mean 4.45) (n = 50). These morphological characteristics are in accordance with those described for the fungus B. dothidea (4). Genomic DNA was isolated from the fungus and internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The nucleotide sequence has been assigned to GenBank Accession No. KC994640. BLAST analysis of the 528-bp segment showed a 100% similarity with several sequences of B. dothidea deposited in NCBI GenBank, which confirmed morphological identification. Pathogenicity was tested by wound inoculation of five surface-sterilized, mature apple fruit cv. Idared with mycelium plugs (5 mm in diameter) of the isolate grown on PDA. Five control fruit were inoculated with sterile PDA plugs. After 5 days of incubation in plastic containers, under high humidity (RH 90 to 95%) at 22°C, typical symptoms of white rot developed on inoculated fruit, while wounded, uninoculated, control fruit remained symptomless. The isolate recovered from symptomatic fruit showed the same morphological features as original isolate. To the best of our knowledge, this is the first report of B. dothidea on apple fruit in Serbia. Apple is widely grown in Serbia and it is important to further investigate the presence of this pathogen in apple storage, as well as in orchards since B. dothidea may cause rapid disease outbreaks that result in severe losses. References: (1) G. H. Hapting Agriculture Handbook 386, USDA, Forest Service, 1971. (2) A. L. Jones and H. S. Aldwinckle Compendium of Apple and Pear Diseases. APS Press, St. Paul, MN, 1990. (3) D. Karadžic et al. Glasnik Šumarskog Fakulteta 83:87, 2000. (4) B. Slippers et al. Mycologia 96:83, 2004.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1225-1225 ◽  
Author(s):  
L. M. Serrato-Diaz ◽  
E. I. Latoni-Brailowsky ◽  
L. I. Rivera-Vargas ◽  
R. Goenaga ◽  
R. D. French-Monar

Post-harvest disease losses of rambutan (Nephelium lappaceum L.) have been reported worldwide and several pathogens have been associated with fruit rot (3,4). In 2011, fruit rot of rambutan was observed on 11-year-old trees at the USDA-ARS Tropical Agriculture Research Station in Mayaguez, Puerto Rico. Infected fruit sections (1 mm2) were surface-sterilized, rinsed with sterile deionized-distilled water, and transferred to acidified potato dextrose agar (APDA). Gliocephalotrichum bulbilium J.J. Ellis & Hesseltine (Gb) and G. simplex (J.A. Meyer) B. Wiley & E. Simmons (Gs) were identified using a taxonomic key (1). In corn meal agar (CMA), five isolates of Gb were light yellow-to-light brown. Conidiophores had sterile stipe extensions ranging from 120 to 150 μm long and were produced contiguous to the erect conidiogenous penicilli. Conidia were unicellular, smooth, oblong to elliptical, and 5.5 to 7.5 μm long by 2.0 to 2.5 μm wide. Bulbilloid aggregates were observed and averaged 70 μm long. In CMA, five isolates of Gs were light brown-to-chestnut brown. Conidiophores had sterile stipe extensions 130 to 180 μm long that were produced approximately 15 to 30 μm away from the conidiogenous penicilli. Conidia were unicellular, smooth, cylindrical to elliptical, and with slightly curved ends ranging from 6.5 to 8.5 μm long by 2.0 to 2.5 μm wide. Chlamydospores were unicellular, brown, smooth and thick-walled, averaging 35 μm long. Pathogenicity tests were conducted on five detached fruits per isolate. Five isolates of each Gliocephalotrichum spp. were inoculated on fruits using 5-mm mycelial disks of 8-day-old pure cultures grown in APDA. Untreated controls were inoculated with APDA disks only. Inoculated fruit was kept in a humid chamber for 8 days at 25°C under 12 hours of fluorescent light. Test was repeated once. Five days after inoculation (DAI), white mycelial growth for Gb and golden mycelial growth for Gs were observed on rambutan fruits. Eight DAI, fruit rot, and aril (flesh) rot symptoms were observed on fruits inoculated with isolates of Gb and Gs. Infected fruit changed in color from red to brown, and, on average, mycelia of Gb and Gs covered 50 and 60% of the fruit, respectively. Conidiophores were observed on spintems (hair-like appendages). Control fruit did not rot. Both species were reisolated from diseased plant tissue, thus fulfilling Koch's postulates. For molecular identification of these species of Gliocephalotrichum, the ITS1-5.8S-ITS2 region of the rDNA and a fragment of the β-tubulin gene were amplified by PCR and aligned with other Gb and Gs sequences in NCBI GenBank for comparison. The sequences submitted to GenBank included Gs Accession Nos. JQ688045 and JQ688046 and Gb Accession Nos. JQ688044 and JQ68847 for the ITS sequences. For the β-tubulin gene, Gs Accession Nos. JQ688049 and JQ688050 and Gb Accession Nos. JQ688048 and JQ688051. Both DNA regions had 99.9 to 100% sequence identity to other isolates of Gb and Gs reported in GenBank (1). Gliocephalotrichum spp. have been associated with rambutan fruit rot in Hawaii, Sri Lanka and Thailand (2,4). To our knowledge, this is the first report of G. bulbilium and G. simplex causing fruit rot of rambutan in Puerto Rico. References: (1) C. Decock et al. Mycologia 98:488, 2006. (2) K. A. Nishijima and P. A. Follett. Plant Dis. 86:71, 2002. (3) L. M. Serrato et al. Phytopathology 100:S176, 2010. (4) D. Sivakumar et al. J. Natn. Sci. Coun. Sri Lanka 25:225, 1997.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Anders Persson ◽  
Charlotte Becker ◽  
Ida Hansson ◽  
Anita Nilsson ◽  
Carina Törn

To evaluate the performance of dried blood spots (DBSs) with subsequent analyses of glutamic acid decarboxylase (GADA) and islet antigen-2 (IA-2A) with the RSR-ELISAs, we selected 80 children newly diagnosed with type 1 diabetes and 120 healthy women. DBSs from patients and controls were used for RSR-ELISAs while patients samples were analysed also with in-house RIAs. The RSR-ELISA-GADA performed well with a specificity of 100%, albeit sensitivity (46%) was lower compared to in RIA (56%;P=.008). No prozone effect was observed after dilution of discrepant samples. RSR-ELISA-IA-2A achieved specificity of 69% and sensitivity was lower (59%) compared with RIA (66%;P<.001). Negative or low positive patients and control samples in the RSR-ELISA-IA-2A increased after dilution. Eluates from DBS can readily be used to analyse GADA with the RSR-ELISA, even if low levels of autoantibodies were not detected. Some factor could disturb RSR-ELISA-IA-2A analyses.


2018 ◽  
Vol 43 (1) ◽  
pp. 31-38
Author(s):  
Vijaya Gowri Esvaran ◽  
Aarthi Mohanasundaram ◽  
Shruthi Mahadeva ◽  
Tania Gupta ◽  
Kangayam M. Ponnuvel

Plant Disease ◽  
2002 ◽  
Vol 86 (3) ◽  
pp. 328-328 ◽  
Author(s):  
W. J. Kaiser ◽  
G. M. Rivero V. ◽  
E. Valverde B. ◽  
L. Yerkes

Gala and Winter Banana apples are important commercial crops in Azurduy and Lima Bamba, which are located in the Department (state) of Chuquisaca, Bolivia. White or bot rot (causal agent Botryosphaeria dothidea (Moug.:Fr.) Ces. De. Not. [anamorph Fusicoccum aesculi Corda]) and black rot (causal agent B. obtusa (Schwein.) Shoemaker [anamorph Sphaeropsis malorum Berk.]) have not been reported previously from Bolivia. Both fungi were isolated from apple fruit and branch cankers in Azurduy, but only B. dothidea was isolated from rotted fruit and limb cankers in Lima Bamba. Both fungi also were isolated from rotted Gala and Winter Banana fruit purchased in the markets in Sucre, Bolivia. Symptoms on fruit consisted of light-to-dark brown lesions that ranged from 3- to 8-cm in diameter. Cankers on limbs were sunken and reddish brown and ranged from 2 to 25+ cm in length and 0.5 to 3 cm in diameter. Neither pathogen produced pycnidia in lesions on rotted fruit, but they often developed in branch cankers. Pseudothecia of B. dothidea and B. obtusa were not observed. Identification of both pathogens was based on descriptions of their anamorphic stages (1). To fulfill Koch's postulates, four healthy Gala apple fruit were inoculated with two isolates of each pathogen by wounding the opposite faces of surface-disinfected fruit with a 5-mm-diameter cork borer and inserting mycelial plugs of the pathogens. Plugs were obtained from the margins of cultures growing on potato dextrose agar (PDA). Wounds were made on the opposite sides of each fruit, a mycelial plug of one of the pathogens was inserted in one wound, and on the opposite side, a plug of sterile PDA was inserted as a control. Each plug containing fungal mycelium or sterile PDA was covered with a plug of trimmed apple tissue, and the apple fruit were incubated in a moist chamber at 17 to 20°C for 10 days. Six branches on two young apple trees growing outdoors in a nursery were inoculated in a similar manner with one isolate of each pathogen: bark was wounded with a 5-mm-diameter cork borer, and the wounded area was inoculated with a plug of PDA containing the pathogen or a plug of sterile PDA for the control. The inoculated sites were wrapped with masking tape to prevent dehydration. Within 10 days, all fruit wounds inoculated with isolates of each pathogen developed brown lesions up to 5 cm in diameter. Each pathogen was reisolated from tissues in which it had been inoculated, but not from any of the noninoculated control sites. Within 6 to 8 weeks, all but one wound on branches inoculated with each pathogen developed depressed canker lesions up to 2 cm in length. Each pathogen was reisolated from the canker produced by inoculation with that pathogen, but not from any of the control sites. Reference: (1) T. B. Sutton. White rot and black rot. Pages 16–20 in: Compendium of Apple and Pear Diseases, A. L. Jones and H. S. Aldwinckle, eds. The American Phytopathological Society, St. Paul, MN, 1991.


2001 ◽  
Vol 91 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Ki Woo Kim ◽  
Eun Woo Park ◽  
Young Ho Kim ◽  
Kyung-Ku Ahn ◽  
Pan Gi Kim ◽  
...  

Apple fruit tissues infected with Botryosphaeria dothidea were examined by transmission electron microscopy using susceptible cv. Fuji and resistant cv. Jonathan. Immature (green) and mature (red) fruits of cv. Fuji with restricted or expanding lesions were also examined to reveal subcellular characteristics related with latent and restricted disease development. In infected susceptible mature fruits, cytoplasmic degeneration and organelle disruption commonly occurred, accompanying cell wall dissolution around invading hyphae. Cell wall dissolution around invading hyphae in subepidermis was rare in immature, red halo-symptomed cv. Fuji and resistant cv. Jonathan fruits. In infected immature fruits of cv. Fuji, presumably at the latent state of disease development, cellular degeneration was less severe, and invading hyphae contained prominent microbody-lipid globule complexes or the deposition of thin electron-dense outer layer around cell wall of intercellular hyphae. Both mature fruits with red halos and resistant apple fruits formed cell wall protuberances at the outside of cell walls. In addition, electron-dense extramural layers were formed in the resistant apple fruits. Aberrant hyphal structures such as intrahyphal hyphae were found only in resistant fruit tissues, indicating the physiologically altered fungal growth. These ultrastructural changes of host tissues and fungal hyphae may reflect the pathogenesis of apple white rot under varying conditions of apple fruits.


Cell Reports ◽  
2012 ◽  
Vol 2 (6) ◽  
pp. 1554-1562 ◽  
Author(s):  
Martin Breuss ◽  
Julian Ik-Tsen Heng ◽  
Karine Poirier ◽  
Guoling Tian ◽  
Xavier Hubert Jaglin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document