scholarly journals First Report of Basal Stem Rot and Foliar Blight Caused by Pythium sylvaticum on Miscanthus sinensis in Illinois

Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 616-616 ◽  
Author(s):  
M. O. Ahonsi ◽  
B. O. Agindotan ◽  
M. E. Gray ◽  
C. A. Bradley

Miscanthus sinensis Anderss., a perennial grass, is native to eastern Asia. It has been widely grown as an ornamental in temperate regions of the world, including the United States, and recently has become an important component of public and private sector bioenergy feedstock Miscanthus selection programs. In August 2008, stem rot and blight was observed on M. sinensis plants in two irregular patches, ~2 to 2.5 × 1 to 1.5 m each in a trial plot that was preceded by corn, at the University of Illinois Energy Farm near Urbana, IL. At the time of the observation, most plants were dead and the wilted tillers had black, soft rotted basal stems. A few plants were stunted and the crowns of the tillers had black-to-brown soft rot. Some tillers' leaves were dead and others had turned light brown. Sample tissue fragments were surface disinfested in 0.5% NaOCl and plated on 1% water agar (WA). After 3 days of incubation in the dark at 23°C, colonies were transferred to corn meal agar (CMA), potato dextrose agar (PDA), or 10% V8 juice agar and incubated at 23°C under continuous white light for up to 2 weeks. Morphological characteristics of the isolates correspond to those originally described for Pythium sylvaticum W.A. Campb. & J.W. Hendrix (1). The mycelia grew and covered the 10-cm-diameter plates within 5 days. On PDA, the culture was a creamy white mycelial mat of coenocytic hyphae. The isolates produced only globose, terminal or intercalary hyphal swellings ranging from 28 to 48 μm in diameter, but no oogonia were produced on any of the three growth media. No zoospores were produced when agar blocks bearing mycelium were flooded with distilled water or 1% soil water. Sequence analysis was performed with the internal transcribed spacer (ITS) region of the rDNA amplified with primer pair ITS1/ITS4 (3) and the mitochondrially encoded cytochrome c oxydase subunit II (cox II) gene using primers FM58/FM66 (2). The resulting 871-bp ITS nucleotide sequence (Accession No. HM991706) was identical among all three isolates analyzed and 99% identical (100% coverage) to ITS sequences of multiple isolates of P. sylvaticum in GenBank. Likewise, the 544-bp cox II sequence (Accession No. HQ454429) was 99% identical (97% coverage) to cox II sequences of multiple isolates of P. sylvaticum. Six pots of M. sinensis seedlings were inoculated by placing two CMA plugs of a 2-week-old culture of isolate F71 at the crown. The control pots were mock inoculated with sterile CMA plugs. The plants were incubated at ~90% relative humidity (RH) and 25°C day and 22°C night for 3 days, and thereafter left on the greenhouse bench at ~65% RH with alternating 9 h of darkness and 15 h of light. Three weeks after inoculation, two of the inoculated seedlings wilted, others were stunted with leaves wilting from the tip downwards and the stems rotting from the crown upward. A thick mat of mycelia was seen on the rotted basal stems. No symptoms were observed in the control. P. sylvaticum was reisolated from both the rotted basal stems and the wilted foliage. To our knowledge, this is the first report of P. sylvaticum on M. sinensis. Infestation of farm soils with P. sylvaticum could limit M. sinensis biomass production significantly by limiting seedling establishment. References: (1) W. A. Campbell and F. F. Hendrix. Mycologia 59:274, 1967. (2) F. M. Martin. Mycologia 92:711, 2000. (3) T. J. White et al. Page 38 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.

Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 159-159 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
P. Pensa ◽  
A. Poli ◽  
M. L. Gullino

Cereus peruvianus monstruosus, known as “monster cactus,” family Cactaceae, is grown as a potted plant. In the winter of 2013, a stem rot was observed on a farm located near Ventimiglia (northern Italy) on 80% of 4,000 9-month-old plants grown in trays in a peat substrate. Symptoms consisted of a rapid rot of the upper portion of the stem. Affected stems at first showed yellowish spots that became brown irregular necrotic lesions with well-defined margins. The tissues below the affected areas were blackened and dry but became soft in the presence of high relative humidity. Fungal sporulation on rotted tissues consisted of caespitose, non-branched, septate conidiophores, olivaceous to brown at the base, paler above, measuring 89.0 to 196.9 × 6.2 to 8.7 (average 124.8 × 7.0) μm. Single conidia were borne on terminal cells. At maturity, conidia with 2 to 5 (average 3) septa were brownish-olivaceous, varying in shape from obclavate, fusiform, ellipsoid or sometimes furcate, and measuring 23.4 to 48.6 × 8.0 to 12.6 (average 38.8 × 10.3) μm. Symptomatic tissues were immersed in 1% sodium hypochlorite for 2 to 3 s and rinsed in sterile distilled water, then fragments excised from the margin of internal lesions were cultured on potato dextrose agar (PDA) medium amended with 25 mg/l of streptomycin sulfate and incubated at 20 to 23°C under alternating daylight and darkness (10 h light, 14 h dark). A fungus that was consistently isolated was subcultured on PDA. At maturity, dark green floccose colonies comprised of light brown septate hyphae, 4.2 to 8.1 (average 5.6) μm in width, produced non-branched, pale to dark brown, septate conidiophores, measuring 99.6 to 176.1 × 4.5 to 6.5 (average 146.7 × 5.4) μm. The conidia produced on PDA were similar to those observed on infected tissues and measured 20.6 to 40.7 × 7.5 to 11.4 (average 32.0 × 9.7) μm, with 1 to 3 septa (average 2). On the basis of the morphological characteristics, the fungus was identified as Bipolaris cactivora (Petr.) Alcorn [Syn.: Drechslera cactivora (Petr.) M. B. Ellis] (4). The internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA) was amplified for one isolate using ITS1/ITS4 primers and sequenced (GenBank Accession No. KF041822). BLASTn analysis (1) of the 557-bp segment showed a 99% similarity with the ITS sequence of Bipolaris cactivora HM598679. For pathogenicity tests, 8 mm diameter mycelial disks removed from 15-day-old PDA cultures of the fungus were placed at the wounded stem apexes of three 7-month-old healthy plants (three disks per plant). Three plants inoculated with non-inoculated PDA disks served as controls. Plants were covered with plastic bags and maintained in a growth chamber at 23 ± 1°C with 12 h light/dark. By 8 days after inoculation, all the inoculated stems were rotted and 10 colonies of B. cactivora were re-isolated from infected tissues. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. Several hosts are listed for B. cactivora including C. peruvianus, and the pathogen has been reported in the United States (2) and in South Korea (3). To our knowledge, this is the first report of B. cactivora on C. peruvianus monstruosus in Italy. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. APS Press, St Paul, MN, 1989. (3) I. H. Hyun et al. Res. Plant Dis. 7:56, 2001. (4) A. Sivanesan. Mycopathologia 111:125, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1269-1269 ◽  
Author(s):  
J. S. Patel ◽  
M. I. Costa de Novaes ◽  
S. Zhang

Arugula (Eruca sativa) is grown in Florida and is an important component in packaged salad products. During spring 2013, leaf lesions on arugula caused significant economic losses in Miami-Dade County, Florida. Symptoms initially appeared as small water-soaked lesions that later became circular, sunken, and white in the center with a dark brown to black halo, up to 4 mm in diameter. Acervuli were found under a dissecting microscope on infected leaf lesions with black spines or setae. Occasionally, small, circular, often longitudinal dark brown spots appeared on leaf branches. Leaf tissues (5 × 5 mm) from lesion margins were surface sterilized in 0.9% sodium hypochlorite for 10 min, rinsed with sterile distilled water, and plated on potato dextrose agar (PDA). PDA plates were incubated at 21°C under 24-h fluorescent lights for 4 to 6 days. The fungus initially produced gray mycelium followed by orange conidial mass. Hyphae of the fungus were septate and hyaline. After 5 to 7 days, the fungus produced acervuli with dark brown to black setae (75 to 130 μm long) (n = 20). Conidia were found in the colonies, which were single celled, oblong, hyaline, and 12 to 25 × 4 to 6 μm (n = 20). The cultural and morphological characteristics of the conidia were similar to those for Colletotrichum higginsianum Sacc (1). To further confirm the species of the isolates, the sequence of the ITS region of rDNA, chitin synthase 1 (CHS1), and actin (ACT) was amplified from isolates 05131 and 05132 using primer pairs ITS 1 and ITS 4 (4), CHS-79F and CHS-354R, and ACT-512F and ACT-783R (3), respectively. The sequenced data of each locus were deposited in GenBank with accessions KF550281.1, KF550282.1, KJ159904, KJ159905, KJ159906, and KJ159907. The resulting sequence of ITS showed 100% identity with sequences of C. higginsianum in JQ005760.1, and sequence of ACT gene showed 100% identity with C. higginsianum in JQ005823.1. The sequence of ACT gene and ITS region had ≤99% identity with other closely related Colletotrichum spp. CHS1 gene had 100% identity with JQ005781.1 belonging to C. higginsianum, and one accession JQ005783.1 belonging to C. fuscum. However, ACT gene and ITS region does not share 100% identity with C. fuscum and therefore, sequence data from three loci proves that isolated pathogen is C. higginsianum. All the above mentioned accessions that shared 100% identity with sequences of isolates used in our study have been previously used to represent the species in the C. destructivum clade in a systematics study (2). To confirm its pathogenicity, a suspension of isolate 05132 at 5 × 105 conidia/ml was sprayed on leaves of five arugula plants until runoff. The other five arugula plants sprayed with water served as non-inoculated controls. Both inoculated and non-inoculated plants were separately covered with a plastic bag to maintain high humidity for 24 h at 27 ± 5°C under natural day/night conditions in the greenhouse. Symptoms first appeared 3 to 4 days after inoculation as small water-soaked lesions, which became sunken with dark brown to black margins. Small circular and longitudinal dark brown spots were also seen on leaf branches as seen initially on naturally infected arugula. No symptoms developed on non-inoculated control plants. C. higginsianum was re-isolated from the lesions with the same morphological characteristics as described above, fulfilling Koch's postulates. To our knowledge, this is the first report of C. higginsianum causing anthracnose of arugula in Florida. This pathogen may potentially affect the salad industry in the United States. References: (1) A. J. Caesar et al. Plant Dis. 94:1166, 2010. (2) P. F. Cannon et al. Stud. Mycol. 73:181, 2012. (3) I. Carbone and L. M. Kohn. Mycologia 91:553, 1999. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 880-880
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Aquilegia flabellata (Ranunculaceae), fan columbine, is a perennial herbaceous plant with brilliant blue-purple flowers with white petal tips that is largely present in gardens. It can also be grown for cut flower production. In September of 2008 and 2009, in a private garden located near Biella (northern Italy), a leaf blight was observed. Leaves of infected plants showed extensive, irregular, brown, necrotic lesions, which were slightly sunken with a well-defined border and surrounded by a violet-brown halo. A hole frequently appeared in the center of dried tissues. Lesions, initially measuring 0.5 mm, later expanded up to 15 mm in diameter and eventually coalesced to cover the entire leaf, which curled without falling. At a later stage, stems were also affected, causing death of the apical part of the plant. The disease affected 90% of the plants in the garden. Dark brown, subglobose pycnidia, 116 to 145 μm, containing light gray, ellipsoid, nonseptate conidia measuring 9.0 to 16.2 × 2.6 to 4.2 (average 12.7 × 3.4) μm were observed on symptomatic tissue. On the basis of these morphological characteristics, the fungus was related to the genus Phoma (2). Diseased tissue was excised from the margin of lesions, rinsed in sterile distilled water, and then cultured on potato dextrose agar (PDA) medium at 23 ± 1°C under alternating daylight and darkness (12-h light and 12-h dark). Fungal colonies produced a pale olive green, lightly floccose mycelium, generating clusters of dark olive green swollen cells. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 504-bp segment showed 100% homology with a sequence of Phoma aquilegiicola (GenBank Accession No. GU237735). The nucleotide sequence of our isolate was assigned GenBank Accession No. HM222537. Pathogenicity tests were performed by spraying a mycelium suspension of a homogenate of mycelium (1 × 105 mycelial fragments per ml) obtained from 15-day-old PDA cultures of the fungus on leaves of six healthy 6-month-old potted A. flabellata plants. Six plants inoculated with a homogenate of PDA served as controls. Plants were maintained in a greenhouse in a high humidity chamber for 7 days after inoculation at 23 ± 1°C and under high relative humidity conditions (70 to 90%). The first foliar lesions developed on leaves 4 days after inoculation. After 15 days, 80% of the leaves were severely infected. Control plants remained healthy. The organism reisolated on PDA from leaf lesions was identical in morphology to the isolate used for inoculation. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of P. aquilegiicola on A. flabellata in Italy. Ascochyta aquilegiae (synonym P. aquilegiicola) has been reported on A. vulgaris in Germany (4) and Aquilegia spp. in the United States (3). Currently, the economic importance of this disease is limited, but may become a more significant problem if the use of A. flabellata in gardens increases. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) G. H. Boerema et al. Phoma Identification Manual. Differentiation of Specific and Infra-Specific Taxa in Culture. CABI Publishing, Wallingford, UK, 2004. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (4) R. Laubert. Gartenwelt 34:621, 1930.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 284-284
Author(s):  
X. L. Yu ◽  
X. Q. Liu ◽  
P. S. Wang ◽  
Y. Z. Wang

Cherry (Cerasus avium (Linn.) Moench) is the third most economically important fruit in Yantai, Shandong Province, China. In August 2012, brown spots or necrosis on cherry seedling leaves, with an incidence of 8.2 to 34.3%, were observed in some fields of cherry seedlings in Yantai. Our survey indicated that the economic losses could reach up to 15.3% if disease conditions, such as a cool rainy summer season, were favorable. Conspicuous watery lesions on the stems turned to brown streaks; the leaves all wilted; and finally the plants collapsed. Diseased stem and leaf samples were surface-disinfected in 1% sodium hypochlorite for 1 min, rinsed three times in sterile water, which was absorbed with filter paper, and then transferred to 10% V8 juice agar medium containing 50 μg/ml ampicillin and 5 μg/ml carbendazim (1). The plates were incubated at 22°C in the dark for 5 days. The colonies consisted of white, loose, fluffy aerial mycelia. Eight isolates were obtained, and all were identified as Phytophthora nicotianae based on morphological characteristics and the sequence of the internal transcribed spacer (ITS) region of rDNA. The sporangia were ovoid/spherical, obturbinate with rounded bases and prominent papillae that were 37.5 to 62.5 × 30 to 50 μm (average 46.4 × 37.8 μm, n = 100) in size, with an average length-to-breadth ratio of 1.2. Chlamydospores were terminal, intercalary, and measured 19 to 42 μm (average 30.4 μm), which is typical of P. nicotianae (2). The genomic DNA of the eight isolates was extracted from mycelia. The ITS region of all eight isolates was amplified using primers ITS1 and ITS4, producing specific products that were directly sequenced. The sequence of a representative isolate P1401 (895 bp) was submitted to GenBank (Accession No. KJ754387). It was 100% similar to P. nicotianae strains NV-20T and TARI 22073 (KC768775 and GU111667). To confirm the pathogenicity, at least 10 cherry leaves and new stems were inoculated with mycelial plugs (5 × 5 mm) from each isolate. Necrosis of leaves and stems was observed 4 and 7 days after inoculation, respectively. No symptoms were observed on the control leaves and stems that were inoculated with blank agar plugs. P. nicotianae was re-isolated from the infected leaves, and the ITS sequence was analyzed to confirm its identity. Phytophthora species, such as P. cambivora, P. megasperma, and P. drechsleri, had been previously isolated from cherry (3), but to the best of our knowledge this is the first report of stem rot and leaf necrosis disease caused by P. nicotianae on cherry. Since the economic loss caused by this disease could reach 15% if an outbreak occurred in a rainy summer, control measures should be implemented. References: (1) Y. Balci et al. Mycol. Res. 112:906, 2008. (2) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St Paul, MN, 1996. (2) S. M. Mircetich and M. E. Matheron. Phytopathology 66:549, 1976.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 457-457 ◽  
Author(s):  
Y. Gai ◽  
R. Pan ◽  
D. Xu ◽  
M. Deng ◽  
W. Chen ◽  
...  

In October 2010, soybean (Glycine max) plants growing in commercial soybean fields in Zengcheng City, Guangdong Province developed symptoms consisting of stem and root rot, yellowing, and defoliation of leaves. Reddish, spherical fruiting bodies appeared in lesions that developed on stems. Plants with symptoms were sampled from fields. Fruiting bodies were excised from diseased tissues. Microscopic examination revealed that they were perithecia, globose to pyriform, and measured 197 to 260 μm in diameter and 226 to 358 μm long. When squeezed gently, cylindrical to clavate asci, 7.2 to 9.6 μm in diameter and 75.4 to 92.0 μm long, containing eight ascospores were exuded from the perithecia. Ascospores were ellipsoid to obovate, two celled, slightly constricted at the septum, had longitudinal striations, and measured 4.9 to 6.0 μm in diameter and 10.6 to 15.0 μm long. The fungus was isolated from the basal stem tissues of diseased soybean plants and cultured on potato dextrose agar (PDA) medium amended with streptomycin sulfate. On PDA, the culture developed into blue-pigmented colonies with whitish mycelium that produced oval to cylindrical microconidia. Microconidia had 0 to 1 septum, ranged from 2.5 to 5.2 × 7.6 to 29.4 μm, and were produced on monophialides. Macroconidia were cylindrical to falcate, thick walled, 2 to 5 septa, and 3.5 to 6.0 × 25.4 to 66.8 μm. Chlamydospores were present and ranged from 6.8 to 13.6 × 5.5 to 9.5 μm. Orange-to-reddish perithecia were readily formed in old culture. These morphological characteristics were consistent with descriptions of Nectria haematococca (anamorph Fusarium solani) (1). The rDNA internal transcribed spacer (ITS) region and the fragment of translation elongation factor 1-alpha (EF1-α) genes of the fungus were amplified, respectively, with universal primers ITS1/ITS4 and ef1/ef2 primers and sequenced. BLAST searches showed that the ITS sequences of three isolates (GenBank Accession Nos. JN015069, JN190942, and JN190943) had 99% similarity with those of N. haematococca(GenBank Accession Nos. DQ535186, DQ535185, and DQ535183) and the EF1-α sequences of three isolates (GenBank Accession Nos. JN874641, JN874642, and JN874643) had 100% similarity with those of F. solani (GenBank Accession Nos. DQ247265 and DQ247327). Completion of Koch's postulates confirmed the pathogenicity of the isolates in a replicated experiment. Thirty-day-old soybean seedlings of cultivar Huaxia No. 3 were inoculated by soaking their root systems in a conidial suspension (106 conidia per ml) for 30 min and then transplanted in plastic pots (20 cm in diameter) and incubated at 25 ± 2°C in a greenhouse. Control plants were treated with sterile water in the same way. There were four plants per pot and there were six replicates for each treatment. Within 3 weeks, more than 70% of the inoculated plants exhibited symptoms of leaf yellowing, stem rot, and root rots while control plants were symptomless. N. haematococca was reisolated from the diseased plants. To our knowledge, this is the first report of N. haematococca causing stem rot of soybean in China and the first description of sexual reproduction of F. solani causing soybean stem rot in nature. This pathogen may pose a serious threat to soybean production in China where soybean is a main crop. Reference: (1) C. Booth. The Genus Fusarium. CAB International, Wallingford, UK, 1971.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1579-1579 ◽  
Author(s):  
Q. R. Bai ◽  
S. Han ◽  
Y. Y. Xie ◽  
R. Dong ◽  
J. Gao ◽  
...  

Daylily (Hemerocallis spp.) is an herbaceous, perennial plant, cultivated for its flowers. Daylily is sold in Asian markets as fresh or dried flowers (the flowers of some species, e.g., Hemerocallis citrina, are edible) or as the corm, which is used for medicinal purposes. In June 2011, daylily leaf streak was found in a nursery of Jilin Agricultural University, Jilin Province, China. Symptoms included water-soaked, irregular spots along the leaf midvein that turned orange to reddish brown and eventually enlarged to coalesce into extensive, necrotic streaks along the length of the leaf, as previously reported (2). Heavily infected leaves often withered and died. Four isolates were recovered from necrotic tissue of leaf spots and cultured on potato dextrose agar (PDA) at 25°C. All colonies were initially cream to peach colored and appeared slimy. With the maturation of the culture, the colonies became dark brown to black with sparse aerial hyphae. Blastic conidia formed simultaneously on intercalary or terminal, undifferentiated conidiogenous cells, and were scattered in dense sections on culture surface. When the conidia dropped from conidiogenous cell, an indistinct scar or a denticle remained. Conidia were hyaline, one-celled, smooth, ellipsoidal, and variable in size (2.73 to 6.01 × 8.45 to 19.36 μm), and all morphological characteristics were consistent with Kabatiella microsticta Bubak (syn. Aureobasidium microstictum; 2,4). The internal transcribed spacer (ITS) region of the nuclear rDNA was amplified using primers ITS4/ITS5 (1). ITS (534 bp) was identical among all four isolates (GenBank Accession No. HE798117) and 100% identical to that of K. microsticta CBS 114.64 (FJ150873). Pathogenicity was confirmed by spraying 20 seedlings of daylily, propagated in tissue-culture medium, with a conidial suspension (106 conidia/ml) of each isolate. A second set of 20 seedlings was sprayed with the same volume of sterile water as the noninoculated control treatment. Plants were grown in the greenhouse at 20 to 25°C and were covered with plastic bags to maintain humidity on the foliage for 72 h. After 5 days, the foliar symptoms described earlier for the field plants appeared on the leaves, whereas the control plants remained healthy. K. microsticta was reisolated from the leaf spots of all 20 inoculated plants. Leaf streak is the most destructive disease of daylily, and was previously reported in Japan and the United States (Illinois, Kentucky, Mississippi, Louisiana, Pennsylvania, Maryland, Virginia, Florida, North Carolina, and Georgia) (3). To our knowledge, this is the first report of the disease caused by K. microsticta in China. References: (1) D. E. L. Cooke et al. Mycol. Res. 101:667, 1997. (2) E. J. Hermanides-Nijhof. Stud. Mycol. 15:153, 1977. (3) R. M. Leahy et al. Plant Pathology Circular No. 376, 1996. (4) P. Zalar et al. Stud. Mycol. 61:21, 2008.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 549-549 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Flowering dogwood (Cornus florida L., Cornaceae), is a small deciduous tree whose showy inflorescences, clusters of bright red fruits and red and purple leaves in autumn, make it a much appreciated ornamental. In June of 2008, severe outbreaks of a previously unknown blight were observed in several private gardens near Biella (northern Italy) after a rainy spring with temperatures that ranged from 7 to 25°C. Dogwoods in the gardens were 10 to 15 years old, and the disease was observed on 20 to 30% of 30 trees. First symptoms consisted of blighted leaves and then shoot dieback. As the disease progressed, entire leaves became necrotic and were covered by an abundant, soft, gray, sporulating mycelium. Tissue fragments of 1 mm2 were excised from the margins of the lesions, immersed in a solution containing 1% sodium hypochlorite, plated on potato dextrose agar (PDA) medium, and incubated under constant fluorescent light at 22 ± 1°C for 10 days. Conidiophores were slender and branched with enlarged apical cells bearing smooth, ash-colored conidia 6 to 10 × 6 to 8 (average 9 × 7) μm on short sterigmata. A few, black, irregularly shaped sclerotia (3 to 5 × 1 to 2 mm) were produced on PDA plates incubated for 20 days at 8 ± 1°C. These morphological characteristics identified the fungus as Botrytis cinerea (2). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 491-bp segment showed a 100% homology with the sequence of Botryotinia fuckeliana (perfect stage of B. cinerea). The nucleotide sequence has been assigned GenBank Accession No. FJ 572049. Pathogenicity tests were performed twice by placing mycelium fragments (1 cm2) of PDA cultures on 30 leaves of 6 healthy 3-year-old potted C. florida plants. Six plants inoculated with PDA alone served as controls. Plants were maintained outdoors at temperatures ranging between 15 and 22°C, spraying leaves with water three times a day. The first foliar lesions similar to those observed in the gardens developed 10 days after inoculation on 23 inoculated leaves, whereas control plants remained healthy. B. cinerea was consistently reisolated from these lesions. To our knowledge, this is the first report of the presence of B. cinerea on C. florida in Italy. The disease has been reported in the United States (4) as well as in Japan (3). At this time, the economic importance of Botrytis blight to flowering dogwoods in Italy is undetermined. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) H. L. Barnett and B. B. Hunter. Illustrated Genera of Imperfect Fungi. Burgess Publishing Company, Minneapolis, MN, 1972. (3) T. Kobayashi. Ann. Phytopathol. Soc. Jpn. 50:528, 1984. (4) C. Westcott. Plants Gard. 7:136, 1951.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 426-426
Author(s):  
K. S. Han ◽  
S. E. Cho ◽  
J. H. Park ◽  
H. D. Shin

Chervil (Anthriscus cerefolium (L.) Hoffm.), belonging to the family Apiaceae, is an aromatic annual herb that is native to the Caucasus. It is widely used as a flavoring agent for culinary purposes. This herb was recently introduced in Korea. In April 2013, plants showing typical symptoms of powdery mildew disease were observed in a polyethylene film-covered greenhouse in Seoul, Korea. White mycelium bearing conidia formed irregular patches on leaves and stems. Mycelial growth was amphigenous. Severe infections caused leaf withering and premature senescence. Voucher specimens were deposited in the Korea University Herbarium (KUS). Hyphae were septate, branched, with moderately lobed appressoria. Conidiophores presented 3 to 4 cells and measured 85 to 148 × 7 to 9 μm. Foot-cells of conidiophores were 37 to 50 μm long. Conidia were produced singly, oblong-elliptical to oblong, measured 30 to 50 × 13 to 18 μm with a length/width ratio of 2.0 to 3.3, lacked conspicuous fibrosin bodies, and with angular/rectangular wrinkling of the outer walls. Germ tubes were produced in the subterminal position of conidia. Chasmothecia were not found. These structures are typical of the powdery mildew Pseudoidium anamorph of the genus Erysiphe. The specific measurements and morphological characteristics were consistent with those of E. heraclei DC. (1). To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) region of rDNA of KUS-F27279 was amplified with primers ITS5 and P3 (4) and sequenced directly. The resulting 561-bp sequence was deposited in GenBank (Accession No. KF111807). A GenBank BLAST search of this sequence showed >99% similarity with those of many E. heraclei isolates, e.g., Pimpinella affinis (AB104513), Anethum graveolens (JN603995), and Daucus carota (EU371725). Pathogenicity was confirmed through inoculation by gently pressing a diseased leaf onto leaves of five healthy potted chervil plants. Five non-inoculated plants served as a control treatment. Plants were maintained in a greenhouse at 22 ± 2°C. Inoculated plants developed signs and symptoms after 6 days, whereas the control plants remained healthy. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. Chervil powdery mildews caused by E. heraclei have been reported in Europe (Bulgaria, France, Germany, Hungary, Italy, Romania, Switzerland, and the former Soviet Union) and the United States (2,3). To our knowledge, this is the first report of powdery mildew caused by E. heraclei on chervil in Asia as well as in Korea. The plant is cultivated in commercial farms for its edible leaves in Korea. Occurrence of powdery mildew is a threat to quality and marketability of this herb, especially those grown in organic farming where chemical control options are limited. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11, CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., Online publication. ARS, USDA. Retrieved July 29, 2013. (3) S. T. Koike and G. S. Saenz. Plant Dis. 88:1163, 2004. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 638-638
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
C. Pellegrino ◽  
M. L. Gullino

Campanula lactiflora (milky bellflower), a perennial herbaceous plant in the Campanulaceae, is used in park and gardens and sometimes cultivated for cut flower production. In June 2008, a previously unknown leaf spot was observed on C. lactiflora ‘New Hybrids’ plants from an experimental nursery located near Carmagnola (Torino, northern Italy). Leaves of infected plants showed extensive and irregular, dark brown, necrotic lesions that were slightly sunken with well-defined borders. Lesions initially ranged from 0.5 to 3 mm, eventually coalesced, and covered the entire leaf. Black pycnidia (107 to 116 μm in diameter) containing hyaline, ellipsoid, nonseptate conidia measuring 3.7 to 4.7 × 1.2 to 2.0 (average 4.3 × 1.6) μm were observed. On the basis of these morphological characteristics, the fungal causal agent of the disease could be related to the genus Phoma. In some cases, the basal leaves turned completely necrotic and the plant died. The disease affected 50% of plants. Diseased tissue was excised, immersed in a solution containing 1% sodium hypochlorite for 2 to 3 s, rinsed in water, and then cultured on potato dextrose agar (PDA) medium. A fungus developed that produced a greenish gray mycelium with a white border when incubated under 12 h/day of fluorescent light at 22 to 25°C. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 459-bp segment showed a 100% similarity with the sequence of a Didymella sp. (synonym Mycosphaerella), anamorphic stage of Phoma spp. The nucleotide sequence has been assigned GenBank Accession No. GU128503. Pathogenicity tests were performed by placing 8-mm-diameter mycelial disks removed from PDA cultures of the fungus isolated from infected plants on leaves of healthy potted 4-month-old C. lactiflora ‘New Hybrids’ plants. Eight disks were placed on each plant. Plants inoculated with PDA alone served as controls. Six plants per treatment were used. Plants were covered with plastic bags for 4 days after inoculation and maintained in a growth chamber with daily average temperatures ranging between 23 and 24°C. The first foliar lesions developed on leaves 5 days after inoculation, and after 8 days, 80% of leaves were severely infected. Control plants remained healthy. A Didymella sp. was consistently reisolated from leaf lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of a Didymella sp. on C. lactiflora in Italy. Mycosphaerella campanulae and M. minor were reported on C. americana and C. lasiocarpa in the United States (2). The economic importance of the disease currently is limited, but could become a more significant problem in the future if the cultivation of this species becomes more widespread. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1367-1367 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Rudbeckia fulgida (common name orange coneflower) is an herbaceous perennial (Asteraceae) grown in full sun in perennial borders in gardens. At the end of the summer of 2007, in a public garden located in Turin (northern Italy), symptoms of vascular wilt and stunting were observed on approximately 80% of the plants grown in a mixed border. Initial symptoms were yellowing of external leaves and brown or black streaks in the vascular tissue of roots, crown, and leaves. A fungus was consistently and readily isolated on potato dextrose agar from symptomatic vascular tissue previously disinfested in 1% sodium hypochloride. Ovoid, dark microsclerotia, 41 to 108 μm, developed in hyaline hyphae after 10 days of growth at 23°C (12 h of light and 12 h of dark). Hyaline, elliptical, single-celled conidia, 3.2 to 7.3 × 2.1 to 3.7 (average 4.7 × 2.8) μm, developed on verticillate conidiophores. On the basis of these morphological characteristics, the fungus was identified as Verticillium dahliae (4). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 530 bp showed a 100% homology with the sequence of V. dahliae. The nucleotide sequence has been assigned GenBank Accession No. EU 627007. Healthy, 30-day-old R. fulgida plants were grown in a steam-disinfested mix of sphagnum peat:pomix:pine bark:clay (50:20:20:10) infested with a conidial suspension (1.5 × 106/ml) of three isolates of V. dahliae isolated from infected plants. Noninoculated plants served as controls. Plants (16 per treatment) were grown in pots (3 liter vol) and maintained in a glasshouse at temperatures between 22 and 25°C and relative humidity between 50 and 70%. First wilt symptoms and vascular discoloration in the roots, crown, and veins developed 17 days after inoculation. Noninoculated plants remained healthy. The pathogenicity tests were carried out twice. To our knowledge, this is the first report in Italy of Verticillium wilt on R. fulgida. Wilts caused by V. dahliae on R. laciniata in Poland (3) and V. albo-atrum on R. hirta in the United States (2) were previously reported. The importance and economic impact of this disease is currently limited but may increase because of the popularity of Rudbeckia spp. in private and public parks. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Their Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) B. Leski. Rocz. Nauk Roln. 253, 1974. (4) G. F. Pegg and B. L. Brady. Verticillium Wilts. CABI Publishing, Wallingford, UK, 2002.


Sign in / Sign up

Export Citation Format

Share Document