scholarly journals First Report of Botrytis Blight Caused by Botrytis cinerea on Flowering Dogwood (Cornus florida) in Italy

Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 549-549 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Flowering dogwood (Cornus florida L., Cornaceae), is a small deciduous tree whose showy inflorescences, clusters of bright red fruits and red and purple leaves in autumn, make it a much appreciated ornamental. In June of 2008, severe outbreaks of a previously unknown blight were observed in several private gardens near Biella (northern Italy) after a rainy spring with temperatures that ranged from 7 to 25°C. Dogwoods in the gardens were 10 to 15 years old, and the disease was observed on 20 to 30% of 30 trees. First symptoms consisted of blighted leaves and then shoot dieback. As the disease progressed, entire leaves became necrotic and were covered by an abundant, soft, gray, sporulating mycelium. Tissue fragments of 1 mm2 were excised from the margins of the lesions, immersed in a solution containing 1% sodium hypochlorite, plated on potato dextrose agar (PDA) medium, and incubated under constant fluorescent light at 22 ± 1°C for 10 days. Conidiophores were slender and branched with enlarged apical cells bearing smooth, ash-colored conidia 6 to 10 × 6 to 8 (average 9 × 7) μm on short sterigmata. A few, black, irregularly shaped sclerotia (3 to 5 × 1 to 2 mm) were produced on PDA plates incubated for 20 days at 8 ± 1°C. These morphological characteristics identified the fungus as Botrytis cinerea (2). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 491-bp segment showed a 100% homology with the sequence of Botryotinia fuckeliana (perfect stage of B. cinerea). The nucleotide sequence has been assigned GenBank Accession No. FJ 572049. Pathogenicity tests were performed twice by placing mycelium fragments (1 cm2) of PDA cultures on 30 leaves of 6 healthy 3-year-old potted C. florida plants. Six plants inoculated with PDA alone served as controls. Plants were maintained outdoors at temperatures ranging between 15 and 22°C, spraying leaves with water three times a day. The first foliar lesions similar to those observed in the gardens developed 10 days after inoculation on 23 inoculated leaves, whereas control plants remained healthy. B. cinerea was consistently reisolated from these lesions. To our knowledge, this is the first report of the presence of B. cinerea on C. florida in Italy. The disease has been reported in the United States (4) as well as in Japan (3). At this time, the economic importance of Botrytis blight to flowering dogwoods in Italy is undetermined. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) H. L. Barnett and B. B. Hunter. Illustrated Genera of Imperfect Fungi. Burgess Publishing Company, Minneapolis, MN, 1972. (3) T. Kobayashi. Ann. Phytopathol. Soc. Jpn. 50:528, 1984. (4) C. Westcott. Plants Gard. 7:136, 1951.

Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 320-320 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Cornus florida L. (Cornaceae), flowering dogwood, is a small deciduous tree whose showy inflorescences, clusters of bright red fruits and red and purple leaves in autumn, make it a much appreciated ornamental. During the summer of 2008, severe outbreaks of a previously unknown powdery mildew were observed in several gardens and nurseries in Piedmont (northern Italy). Young leaves were covered with dense, white mycelia and conidia, especially on the adaxial surface. As the disease progressed, infected leaves turned red. Conidia were hyaline, elliptical, borne singly, and measured 32 to 46 × 15 to 20 (average 38 × 17) μm. Conidiophores measured 68 to 77 × 8 to 9 (average 73 × 8) μm, with a cylindrical foot cell measuring 26 to 37 × 8 to 10 (average 31 × 9) μm, followed by two shorter cells. Fibrosin bodies were absent. No chasmothecia were observed. The ITS region (internal transcribed spacer) of rDNA was amplified using primers ITS4/ITS6 and sequenced. The 627-bp sequence (Accession No. EU FJ436989 in GenBank) has 99% identity with Erysiphe pulchra. As proof of pathogenicity, diseased leaves were pressed against leaves of three healthy 3-year-old plants. Three noninoculated plants served as controls. Inoculated and noninoculated plants were maintained outdoors at 13 to 21°C. After 15 days, typical powdery mildew colonies developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of powdery mildew on C. florida caused by E. pulchra in Italy. Powdery mildew of dogwood, caused by Microsphaera (Erysiphe) pulchra, has been reported in the United States (3) and Japan (1). In Italy, a powdery mildew caused by an Oidium sp. has been reported on C. sanguinea (2). Herbarium specimens of this disease are available at AGROINNOVA Collection, University of Torino, Italy. References: (1) T. Kobayashi. Index of Fungi Inhabiting Woody Plants in Japan. Host, Distribution, and Literature. Zenkoku-Noson-Kyoikai Publishing Co., Ltd., Tokyo, 2007. (2) G. Sicoli et al. Inf. Agrario 56/48:84, 2000. (3) V. L. Smith. Plant Dis. 83:782, 1999.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 969-969
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Platycodon grandiflorum (balloon flower), a perennial plant belonging to the Campanulaceae family, is widely grown as a bedding plant in temperate gardens. This species is characterized by the ability to bloom profusely throughout the summer into early fall and for its white to blue and pink flowers. In September 2008, symptoms of a previously unknown blight were observed in six gardens located in the Biella Province of northern Italy. When the disease developed, temperatures ranged between 15 and 22°C with frequent rains (149.8 mm of rainfall registered in September 2008 by the meteorological station of Oropa, located in the same area in which the disease appeared). Initially, leaves and petioles appeared chlorotic. Subsequently, lesions developed on the stems and flowers were sometimes affected. In each garden examined, approximately 50% of the plants were affected by the disease. A soft, gray mycelium was observed on symptomatic tissues, especially the stems. Severely infected leaves and stems eventually became completely rotted and later desiccated. Diseased tissue was excised from affected leaves, immersed in a solution containing 1% sodium hypochlorite for 10 s, and then cultured on potato dextrose agar (PDA) medium. A fungus developed that produced abundant mycelium on PDA medium when incubated under constant fluorescent light at 22 ± 1°C. Numerous sclerotia were produced on PDA plates incubated for 20 days at 8 ± 1°C. Sclerotia were dark, irregular, and measured 1 to 3.5 × 0.9 to 2.5 (average 2.1 × 1.5) mm. Conidia were smooth, ash colored, unicellular, ovoid, and measured 11 to 19 × 7 to 13 (average 15 × 11) μm. These morphological features were typical of those described for Botrytis cinerea (2). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 539-bp segment showed 100% similarity with the sequence of Botryotinia fuckeliana (perfect stage of B. cinerea). The nucleotide sequence has been assigned the GenBank Accession No. GQ149480. Pathogenicity tests were performed by placing 1-cm2 fragments removed from PDA cultures of B. cinerea isolated from balloon flower on leaves of healthy potted P. grandiflorum plants (4-month-old). Five fragments were placed on each plant. Plants inoculated with PDA alone served as controls. Ten plants per treatment were used. Plants were covered with plastic bags for 5 days after inoculation and maintained in a greenhouse at temperatures between 18 and 23°C. The first foliar lesions developed on leaves 3 days after inoculation, and after 5 days, 80% of the leaves were severely infected. As the infection progressed after the inoculation, the stems also became infected. Control plants remained healthy. B. cinerea was consistently reisolated from leaf and stem lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of B. cinerea on P. grandiflorum in Italy, as well as in Europe. Blight on balloon flower attributed to Botrytis spp. was previously reported in the United States (3). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England, 1971. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 638-638
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
C. Pellegrino ◽  
M. L. Gullino

Campanula lactiflora (milky bellflower), a perennial herbaceous plant in the Campanulaceae, is used in park and gardens and sometimes cultivated for cut flower production. In June 2008, a previously unknown leaf spot was observed on C. lactiflora ‘New Hybrids’ plants from an experimental nursery located near Carmagnola (Torino, northern Italy). Leaves of infected plants showed extensive and irregular, dark brown, necrotic lesions that were slightly sunken with well-defined borders. Lesions initially ranged from 0.5 to 3 mm, eventually coalesced, and covered the entire leaf. Black pycnidia (107 to 116 μm in diameter) containing hyaline, ellipsoid, nonseptate conidia measuring 3.7 to 4.7 × 1.2 to 2.0 (average 4.3 × 1.6) μm were observed. On the basis of these morphological characteristics, the fungal causal agent of the disease could be related to the genus Phoma. In some cases, the basal leaves turned completely necrotic and the plant died. The disease affected 50% of plants. Diseased tissue was excised, immersed in a solution containing 1% sodium hypochlorite for 2 to 3 s, rinsed in water, and then cultured on potato dextrose agar (PDA) medium. A fungus developed that produced a greenish gray mycelium with a white border when incubated under 12 h/day of fluorescent light at 22 to 25°C. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 459-bp segment showed a 100% similarity with the sequence of a Didymella sp. (synonym Mycosphaerella), anamorphic stage of Phoma spp. The nucleotide sequence has been assigned GenBank Accession No. GU128503. Pathogenicity tests were performed by placing 8-mm-diameter mycelial disks removed from PDA cultures of the fungus isolated from infected plants on leaves of healthy potted 4-month-old C. lactiflora ‘New Hybrids’ plants. Eight disks were placed on each plant. Plants inoculated with PDA alone served as controls. Six plants per treatment were used. Plants were covered with plastic bags for 4 days after inoculation and maintained in a growth chamber with daily average temperatures ranging between 23 and 24°C. The first foliar lesions developed on leaves 5 days after inoculation, and after 8 days, 80% of leaves were severely infected. Control plants remained healthy. A Didymella sp. was consistently reisolated from leaf lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of a Didymella sp. on C. lactiflora in Italy. Mycosphaerella campanulae and M. minor were reported on C. americana and C. lasiocarpa in the United States (2). The economic importance of the disease currently is limited, but could become a more significant problem in the future if the cultivation of this species becomes more widespread. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 554-554 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Catharanthus roseus (periwinkle), a perennial plant belonging to the Apocynaceae family, is grown as a warm-season bedding plant in temperate gardens. This species is characterized by a long flowering period and prized for its white-to-dark pink flowers. In October of 2008, 15% of C. roseus plants in a public garden located in Torino (northern Italy) showed symptoms of a previously unknown blight. When the disease developed, temperatures ranged between 10 and 24°C (average 17.3°C) and plants were being watered through sprinkle irrigation. Necrosis developed on the stems first, eventually spreading to leaf stalks, and the the entire leaf. Subsequently, the pathogen developed a scant, delicate, gray mycelium on affected tissues, particularly diffused on the stems. Severely infected leaves and stems eventually became completely rotted and desiccated. Tissues were excised from diseased leaves, immersed in a solution containing 1% sodium hypochlorite for 10 s, and cultured on potato dextrose agar (PDA) medium. The fungus produced abundant mycelium on PDA medium when incubated under constant fluorescent light at 22 ± 1°C. Numerous sclerotia were produced on PDA plates incubated for 20 days at 8 ± 1°C. Sclerotia were dark and irregular, measuring 0.5 to 2.8 × 0.5 to 2.2 (average 1.4 × 1.1) mm. Conidia were smooth, ash colored, ovoid, measuring 8 to 16 × 6 to 10 (average 10 × 7) μm, and similar to those described for Botrytis cinerea (2). The internal transcribed spacer (ITS) region of rDNA was amplified with primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 780-bp segment showed a 100% homology with the sequence of Botryotinia fuckeliana (perfect stage of B. cinerea). The nucleotide sequence has been assigned GenBank Accession No. FJ486271. Pathogenicity tests were performed by placing numerous fragments of PDA cultures on leaves of healthy, potted, 8-month-old C. roseus plants. Plants inoculated with PDA alone served as controls. Three plants per treatment were used. Plants were covered with plastic bags for 5 days after inoculation and maintained in a greenhouse at temperatures ranging between 18 and 25°C. The first foliar lesions developed on leaves 5 days after inoculation, whereas control plants remained healthy. B. cinerea was consistently reisolated from these lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of B. cinerea on C. roseus in Italy. The same disease was previously reported in many countries including the United States (3) and Taiwan (4). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) H. L. Barnett and B. B. Hunter. Illustrated Genera of Imperfect Fungi. Burgess Publishing Company, Minneapolis, MN, 1972. (3) M. L. Daughtrey et al. Compendium of Flowering Potted Plant Diseases. The American Phytopathological Society, St Paul, MN, 1995. (4) W. Ou-Yang and W. S. Wu. Plant Pathol. Bull. 7:147, 1998.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1116-1116 ◽  
Author(s):  
W. Cheon ◽  
Y. H. Jeon

In the winter of 2011, greenhouse-grown zucchini (Cucurbita pepo) in Andong City, Korea, showed severe disease symptoms on fruits and dying leaves of zucchini plants that resembled gray mold disease with about 20% yield loss. Symptoms included extensive growth of mycelia and gray conidia on stem and fruit lesions. Lesions expanded rapidly under cool, humid conditions. As the disease progressed, leaves, stems, and fruits became necrotic and were covered by an abundant, soft, gray, sporulating mycelium. Diseased fruit tissue was excised and surface sterilized by immersion in 2% NaOCl for 1 min, placed on PDA (potato dextrose agar), and incubated at 22°C. Fungal colonies were initially white and became gray to brown after 72 h. Analysis of light micrographs showed the presence of elliptical conidia on PDA that was 7.5 to 16.0 μm long and 5 to 10.5 μm wide. In culture, a few, black, small and large irregular sclerotia were produced. Microsclerotia were round, spherical or irregular in shape, and ranged from 1.0 to 3.3 and 1.2 to 3.4 mm (width and length). Conidiophores were slender and branched with enlarged apical cells bearing smooth, ash-colored conidia. These morphological characteristics identified the fungus as Botrytis cinerea (1). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1 (forward) and ITS4 (reverse) primer set (ITS1: 5′-TCCGTAGGTGAACCTGCGG-3′, ITS4: 5′-TCCTCCGCTTATTGATATGC-3′) and sequenced (2). BLAST analysis of the PCR product showed that the sequence had 100% identity with the nucleotide sequences for B. cinerea. Pathogenicity tests were performed by placing mycelium fragments (1 cm2) of PDA cultures on zucchini fruits. Controls were treated with PDA alone. Five replicates for the inoculated and control plants were used. All fruits were covered with plastic bags and incubated in a growth chamber to maintain 90 to 100% relative humidity at 22°C. Typical symptoms appeared 2 to 6 days after inoculation. The inoculated plants developed typical gray mold symptoms with gray sporulating lesions, while controls remained healthy with no lesions. B. cinerea reisolated from the inoculated tissues was morphologically identical to the original isolates. In a cold outside (below 0°C), wet greenhouse, plants are likely to be exposed to resident Botrytis populations and if the gray mold disease occurs, it can spread on zucchini plants very fast, in 2 days to a week inside a 100 m2 greenhouse. Therefore, gray mold disease could have a significant impact on greenhouse production of zucchini. To our knowledge, this is the first report of B. cinerea causing gray mold of greenhouse-grown zucchini in Korea. References: (1) H. L. Barnett and B. B. Hunter. Illustrated Genera of Imperfect Fungi. Burgess Publishing Company, Minneapolis, MN, 1972. (2) T. J. White et al. PCR Protocols. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1380-1380 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
G. Ortu ◽  
M. L. Gullino

Lettuce (Lactuca sativa L.) is widely grown in Italy, with the production for the preparation of ready-to-eat salads becoming increasingly important. During the spring of 2011, a previously unknown leaf spot was observed on L. sativa plants, cv Rubia, grown in several plastic tunnels in Lumbardy (northern Italy), 20 to 25 days after sowing. Thirty to forty per cent of leaves of the plants growing in the part of the tunnel with the highest relative humidity were affected. Leaves of infected plants showed extensive, irregular, dark brown, necrotic lesions with a chlorotic halo. Lesions initially ranged from 0.5 to 3 mm, then eventually coalesced, reaching 2 to 3 cm, showing a well-defined, dark brown border. Affected leaves senesced and withered. The crown was not affected by the disease. Diseased tissue was excised, immersed in a solution containing 1% sodium hypochlorite for 60 s, rinsed in water, then cultured on potato dextrose agar (PDA), amended with 25 mg/l of streptomycin sulphate. After 5 days, a fungus developed, producing a greenish grey mycelium with a white border when incubated under 12 h/day of fluorescent light at 21 to 23°C. In order to favor the production of conidia, the fungus was transferred on malt extract agar (MA) and maintained under 12 h/day of fluorescent light at 22°C. After 15 days, black pycnidia, 175 to 225 μm, developed, with hyaline, elliptical, unicellular conidia, measuring 3.21 to 6.7 × 1.08 to 3.2 (average 5.5 × 1.9) μm. On the basis of these morphological characteristics, the fungal causal agent of the disease could be related to the genus Phoma (2). The internal transcribed spacer (ITS) region of rDNA of the isolate PHT30 was amplified using the primers ITS1/ITS4 and sequenced. BLAST analysis (1) of the 466-bp segment showed a 99% similarity with the sequence of Phoma tropica (GenBank Accession No. JF923820.1). The nucleotide sequence has been assigned the GenBank Accession No. JQ954396. Pathogenicity tests were performed by spraying healthy 20-day-old lettuce plants, cv Rubia, with a spore suspension (1 × 105 conidia/ml) prepared from 14-day-old colonies of the strain PHT30 grown on MA cultures. Plants inoculated with water alone served as controls. Ten plants per isolate were used. Plants were covered with plastic bags for 5 days after inoculation and maintained in a growth chamber at 20°C and 80% relative humidity. The first foliar lesions, similar to those occurring on the naturally infected plants, developed on leaves 12 days after inoculation. Control plants remained healthy. The pathogen was consistently reisolated from leaf lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of P. tropica on lettuce in Italy as well as worldwide. In the United States, the presence of P. exigua was reported in 2006 (3). The economic importance of the disease at present is limited, probably also because symptoms can be confused with those caused by Botrytis cinerea. However, P. tropica could become a more significant problem because of the importance of the crop. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) G. H. Boerema. Trans. Br. Mycol. Soc. 67:289, 1976. (3) S. Y. Koike. Plant Dis. 90:1268, 2006.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 616-616 ◽  
Author(s):  
M. O. Ahonsi ◽  
B. O. Agindotan ◽  
M. E. Gray ◽  
C. A. Bradley

Miscanthus sinensis Anderss., a perennial grass, is native to eastern Asia. It has been widely grown as an ornamental in temperate regions of the world, including the United States, and recently has become an important component of public and private sector bioenergy feedstock Miscanthus selection programs. In August 2008, stem rot and blight was observed on M. sinensis plants in two irregular patches, ~2 to 2.5 × 1 to 1.5 m each in a trial plot that was preceded by corn, at the University of Illinois Energy Farm near Urbana, IL. At the time of the observation, most plants were dead and the wilted tillers had black, soft rotted basal stems. A few plants were stunted and the crowns of the tillers had black-to-brown soft rot. Some tillers' leaves were dead and others had turned light brown. Sample tissue fragments were surface disinfested in 0.5% NaOCl and plated on 1% water agar (WA). After 3 days of incubation in the dark at 23°C, colonies were transferred to corn meal agar (CMA), potato dextrose agar (PDA), or 10% V8 juice agar and incubated at 23°C under continuous white light for up to 2 weeks. Morphological characteristics of the isolates correspond to those originally described for Pythium sylvaticum W.A. Campb. & J.W. Hendrix (1). The mycelia grew and covered the 10-cm-diameter plates within 5 days. On PDA, the culture was a creamy white mycelial mat of coenocytic hyphae. The isolates produced only globose, terminal or intercalary hyphal swellings ranging from 28 to 48 μm in diameter, but no oogonia were produced on any of the three growth media. No zoospores were produced when agar blocks bearing mycelium were flooded with distilled water or 1% soil water. Sequence analysis was performed with the internal transcribed spacer (ITS) region of the rDNA amplified with primer pair ITS1/ITS4 (3) and the mitochondrially encoded cytochrome c oxydase subunit II (cox II) gene using primers FM58/FM66 (2). The resulting 871-bp ITS nucleotide sequence (Accession No. HM991706) was identical among all three isolates analyzed and 99% identical (100% coverage) to ITS sequences of multiple isolates of P. sylvaticum in GenBank. Likewise, the 544-bp cox II sequence (Accession No. HQ454429) was 99% identical (97% coverage) to cox II sequences of multiple isolates of P. sylvaticum. Six pots of M. sinensis seedlings were inoculated by placing two CMA plugs of a 2-week-old culture of isolate F71 at the crown. The control pots were mock inoculated with sterile CMA plugs. The plants were incubated at ~90% relative humidity (RH) and 25°C day and 22°C night for 3 days, and thereafter left on the greenhouse bench at ~65% RH with alternating 9 h of darkness and 15 h of light. Three weeks after inoculation, two of the inoculated seedlings wilted, others were stunted with leaves wilting from the tip downwards and the stems rotting from the crown upward. A thick mat of mycelia was seen on the rotted basal stems. No symptoms were observed in the control. P. sylvaticum was reisolated from both the rotted basal stems and the wilted foliage. To our knowledge, this is the first report of P. sylvaticum on M. sinensis. Infestation of farm soils with P. sylvaticum could limit M. sinensis biomass production significantly by limiting seedling establishment. References: (1) W. A. Campbell and F. F. Hendrix. Mycologia 59:274, 1967. (2) F. M. Martin. Mycologia 92:711, 2000. (3) T. J. White et al. Page 38 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1269-1269 ◽  
Author(s):  
J. S. Patel ◽  
M. I. Costa de Novaes ◽  
S. Zhang

Arugula (Eruca sativa) is grown in Florida and is an important component in packaged salad products. During spring 2013, leaf lesions on arugula caused significant economic losses in Miami-Dade County, Florida. Symptoms initially appeared as small water-soaked lesions that later became circular, sunken, and white in the center with a dark brown to black halo, up to 4 mm in diameter. Acervuli were found under a dissecting microscope on infected leaf lesions with black spines or setae. Occasionally, small, circular, often longitudinal dark brown spots appeared on leaf branches. Leaf tissues (5 × 5 mm) from lesion margins were surface sterilized in 0.9% sodium hypochlorite for 10 min, rinsed with sterile distilled water, and plated on potato dextrose agar (PDA). PDA plates were incubated at 21°C under 24-h fluorescent lights for 4 to 6 days. The fungus initially produced gray mycelium followed by orange conidial mass. Hyphae of the fungus were septate and hyaline. After 5 to 7 days, the fungus produced acervuli with dark brown to black setae (75 to 130 μm long) (n = 20). Conidia were found in the colonies, which were single celled, oblong, hyaline, and 12 to 25 × 4 to 6 μm (n = 20). The cultural and morphological characteristics of the conidia were similar to those for Colletotrichum higginsianum Sacc (1). To further confirm the species of the isolates, the sequence of the ITS region of rDNA, chitin synthase 1 (CHS1), and actin (ACT) was amplified from isolates 05131 and 05132 using primer pairs ITS 1 and ITS 4 (4), CHS-79F and CHS-354R, and ACT-512F and ACT-783R (3), respectively. The sequenced data of each locus were deposited in GenBank with accessions KF550281.1, KF550282.1, KJ159904, KJ159905, KJ159906, and KJ159907. The resulting sequence of ITS showed 100% identity with sequences of C. higginsianum in JQ005760.1, and sequence of ACT gene showed 100% identity with C. higginsianum in JQ005823.1. The sequence of ACT gene and ITS region had ≤99% identity with other closely related Colletotrichum spp. CHS1 gene had 100% identity with JQ005781.1 belonging to C. higginsianum, and one accession JQ005783.1 belonging to C. fuscum. However, ACT gene and ITS region does not share 100% identity with C. fuscum and therefore, sequence data from three loci proves that isolated pathogen is C. higginsianum. All the above mentioned accessions that shared 100% identity with sequences of isolates used in our study have been previously used to represent the species in the C. destructivum clade in a systematics study (2). To confirm its pathogenicity, a suspension of isolate 05132 at 5 × 105 conidia/ml was sprayed on leaves of five arugula plants until runoff. The other five arugula plants sprayed with water served as non-inoculated controls. Both inoculated and non-inoculated plants were separately covered with a plastic bag to maintain high humidity for 24 h at 27 ± 5°C under natural day/night conditions in the greenhouse. Symptoms first appeared 3 to 4 days after inoculation as small water-soaked lesions, which became sunken with dark brown to black margins. Small circular and longitudinal dark brown spots were also seen on leaf branches as seen initially on naturally infected arugula. No symptoms developed on non-inoculated control plants. C. higginsianum was re-isolated from the lesions with the same morphological characteristics as described above, fulfilling Koch's postulates. To our knowledge, this is the first report of C. higginsianum causing anthracnose of arugula in Florida. This pathogen may potentially affect the salad industry in the United States. References: (1) A. J. Caesar et al. Plant Dis. 94:1166, 2010. (2) P. F. Cannon et al. Stud. Mycol. 73:181, 2012. (3) I. Carbone and L. M. Kohn. Mycologia 91:553, 1999. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1065-1065
Author(s):  
J.-H. Huang ◽  
P.-J. Ann ◽  
Y.-H. Chiu ◽  
J.-N. Tsai

Taiwan cherry or Formosan cherry (Prunus campanulata Maxim.) is a beautiful ornamental tree that is native to Taiwan. In spring 2005, a severe disease was observed on 1- to 3-year-old seedlings of Taiwan cherry in a garden in Tungshih, Taichung, Taiwan. Infected plants showed symptoms of greenish water-soaked spots on leaves that became dark brown, 2 to 3 cm in diameter. Infected leaves withered and fell to the ground in 3 to 5 days and young shoots showed symptoms of withering and drooping. Infected roots showed symptoms of necrosis. Severely infected plants eventually died. A Phytophthora sp. was isolated consistently from diseased samples of Taiwan cherry and associated soil. Six isolates of Phytophthora, of the A1 mating type (1), were isolated from single zoospores. Two of these isolates, Tari 25141 (deposited as BCRC34932 in Bioresource Collection and Research Center, Shinchu, Taiwan) and Tari 25144 (BCRC34933), were used for pathogenicity tests on 1-year-old seedlings of Taiwan cherry to fulfill Koch's postulates. Inoculation was done by placing a cotton swab containing zoospore suspension on leaves or stem, or by soaking seedlings in the zoospore suspension. Inoculated seedlings were kept in a greenhouse at 20 to 25°C for 30 days and examined for appearance of symptoms. Results showed that both isolates were pathogenic on seedlings of Taiwan cherry, causing symptoms similar to those observed on naturally infected seedlings. The temperature range for growth of the six isolates of Phytophthora was 8 to 32°C with optimum temperature at 24°C. The linear growth rate was 72 mm per day on V8A culture (5% V8 vegetable juice, 0.02% CaCO3, and 2% Bacto agar) at 24°C. The colonies on potato dextrose agar produced sparse aerial mycelia with conspicuous radiate patterns. Sporangia were sparse on V8A agar blocks, but abundant when the agar blocks were placed in water under continuous white fluorescent light (average 2,000 lux) for 2 days. Sporangiophores branched sympodially. Sporangia were pear shaped, nonpapillate and nondeciduous, 50 to 75 (62) × 30 to 48 (40) μm, with a length/width ratio of 1.2 to 2.2 (1.6). New internal nested proliferate sporangia were formed inside the empty sac of old matured sporangia after releasing zoospores. No chlamydospores were formed on V8A. Hyphal swellings with distinctive irregular catenulation were produced on V8A and in water. The pathogen was stimulated to form its own oospores by the A2 tester using the method described by Ko (1). Oogonia were 28 to 50 (40) μm in diameter with smooth or irregularly protuberant walls. Oospores were mostly aplerotic and 18 to 42 (31) μm in diameter. Antheridia were amphigynous, mostly two-celled, and 10 to 42 (29) × 12 to 24 (19) μm. The sequence of the internal transcribed spacers (ITS) region of nuclear ribosomal DNA of isolate Tari 25141 (GenBank Accession No. GU111589) was 831 bp and had 99% sequence identity with a number of Phytophthora cambivora isolates such as GenBank Accession Nos. HM004220 (2), AY787030, and EF486692. Based on the morphological characteristics of sporangia and sexual structures and the molecular analysis of ITS sequences, the pathogen from Taiwan cherry was identified as P. cambivora (Petri) Buis. To our knowledge, this is the first report of P. cambivora on native Taiwan cherry in Taiwan and, so far, no other natural hosts have been reported. References: (1) W. H. Ko. J. Gen. Microbiol. 116:459, 1980. (2) P. W. Reeser et al. Mycologia 103:225, 2011.


Plant Disease ◽  
2009 ◽  
Vol 93 (7) ◽  
pp. 764-764 ◽  
Author(s):  
Y. Ko ◽  
C. W. Liu ◽  
C. Y. Chen ◽  
S. Maruthasalam ◽  
C. H. Lin

Mango (Mangifera indica L.) is grown on approximately 20,000 ha in Taiwan. It is an economically important crop and the income of many fruit farmers comes primarily from mango production. During 2006 and 2007, a stem-end rot disease was observed 1 week after harvest on 28 to 36% of stored mangoes picked from six orchards in the Pingtung, Tainan, and Kaoshiung regions. Two popular mango cultivars, Keitt and Irwin, showed greater susceptibility to this disease, while ‘Haden’ was found to be moderately susceptible. In storage, symptoms initially appeared as light-to-dark brown lesions surrounding peduncles. Rot symptoms advanced slowly but eventually penetrated the mesocarp, which consequently reduced the commercial value of fruits. The fungus formed abundant pycnidia (0.1 to 0.6 mm in diameter) on infected fruits in advanced stages of symptom development. Pieces of symptomatic fruits plated on acidified potato dextrose agar (PDA) and incubated at 25 ± 1°C consistently yielded the same fungus. A single conidial isolate was cultured. Pycnidia developed on PDA after continuous exposure to light for 9 to 14 days. On the basis of morphological characteristics, the fungus was identified as Phomopsis mangiferae L. (2,3). Pycnidia released two types of conidia: α-conidia (5 to 10 × 2.3 to 4.0 μm) were hyaline and oval to fusoid; and β-conidia (15.0 to 37.5 × 1.3 to 2.5 μm) were hyaline and filiform with characteristic curves. Conidiophores were hyaline, filiform, simple or branched, septate, and 15 to 75 μm long. Cultures incubated under continuous fluorescent light (185 ± 35 μE·m–2·s–1) at 25°C for 3 days were used as inoculum for pathogenicity tests. Five fruits from ‘Keitt’ were wounded with a sterilized scalpel and each wound (2 × 2 × 2 mm) was inoculated with either a 5-mm mycelium agar plug or a 0.5-ml spore suspension (105 conidia per ml) of the fungus. Five wounded fruits inoculated with 5-mm PDA plugs or sterile water alone served as controls. Inoculated areas were covered with moist, sterile cotton. Fruits were enclosed in plastic bags and incubated at 24°C for 3 days. The test was performed three times. The same symptoms were observed on all inoculated fruits, whereas no decay was observed on control fruits. Reisolations from the inoculated fruits consistently yielded P. mangiferae, thus fulfilling Koch's postulates. This disease has previously been reported in Australia, Brazil, China, Cuba, India, Malaysia, and the United States (1). To our knowledge, this is the first report of P. mangiferae causing stem-end rot disease on mangoes in Taiwan. Our report necessitates taking preventive strategies in the field, prior to or after harvest, to contain postharvest losses in mangoes. References: (1) G. I. Johnson. Page 39 in: Compendium of Tropical Fruit Diseases. R. C. Ploetz et al., eds. The American Phytopathological Society. St. Paul, MN, 1994. (2) R. C. Ploetz, ed. Page 354 in: Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, UK, 2003. (3) E. Punithalingam. No. 1168 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1993.


Sign in / Sign up

Export Citation Format

Share Document