scholarly journals Distribution of Candidatus Liberibacter asiaticus in Citrus and the Asian Citrus Psyllid in Texas Over a Decade

Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1118-1126 ◽  
Author(s):  
Mamoudou Sétamou ◽  
Olufemi J. Alabi ◽  
Madhurababu Kunta ◽  
Jon Dale ◽  
John V. da Graça

Huanglongbing (HLB, citrus greening disease) in the major citrus-producing states of the United States is associated with Candidatus Liberibacter asiaticus (CLas), which is vectored by the Asian citrus psyllid (ACP). Surveys were conducted in Texas from 2007 to 2017 to assess the prevalence and titer of CLas in ACPs and citrus trees. ACP and citrus leaf tissue samples were collected from suspect trees in residential areas and commercial groves (orchards) and assayed for CLas by quantitative PCR. CLas detection in ACPs (2011) preceded that of citrus trees (2012) by several months. Annual incidences of CLas-positive ACPs and leaf tissue followed an exponential growth pattern over the survey period, varying from 0.03 to 28.7% in ACPs and 0.6 to 36.5% in citrus trees. There was a significant and positive relationship between the monthly incidences of CLas-positive ACP and leaf tissue samples. The proportion of HLB detection sites also increased with time, reaching 26 and 40% of commercial groves and residential sites, respectively, by 2017. Seasonal variations were observed in the incidences of CLas-positive ACPs and citrus trees such that significantly more CLas-positive ACPs and trees were recorded during the fall and winter of a given year relative to the hot summer. A temporal analysis of the class distribution of cycle threshold values revealed a trend of increased bacterial accumulation in ACPs and trees over time, with the trend more pronounced for the former than the latter host type. These findings provide a comprehensive insight into the ongoing CLas/HLB epidemic in Texas, with potential lessons for California and other citrus-producing areas where the disease is not yet established.

2014 ◽  
Vol 15 (4) ◽  
pp. 184-188 ◽  
Author(s):  
Olufemi J. Alabi ◽  
Madhurababu Kunta ◽  
Jon Dale ◽  
Mamoudou Sétamou

Huanglongbing (HLB) disease, associated with ‘Candidatus Liberibacter asiaticus’ (CLas), is primarily spread via infected citrus nursery trees and by infective Asian citrus psyllid, the insect vector. Recently, the Texas Department of Agriculture initiated regulations requiring commercial and retail citrus nurseries in Texas to transition from traditional open-field to enclosed facilities with insect-resistant screens to mitigate the risk of nurseries serving as sources of CLas. Although several nursery production facilities have adopted this regulation, non-enclosed nurseries persist and pose a significant threat to the citrus industry as potential sources of CLas. A systematic survey for HLB was embarked on in a semi-open nursery facility in South Texas in April 2014. Leaf tissue samples taken from 94 trees representing 5% of the total number of potted trees in the nursery were tested for CLas by quantitative and conventional PCR assays. Of 94 trees tested, 3.2% (3 trees) were positive for CLas by both assays. The presence of CLas in the PCR-positive samples was confirmed by multi-locus sequence analyses. The results represent the first report of HLB in a nursery facility in Texas, and underscore the need for more intensive surveillance for HLB in citrus nursery stock as an integral component of HLB mitigation efforts in Texas. Accepted for publication 27 August 2014. Published 15 December 2014.


Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1080-1086 ◽  
Author(s):  
Greg McCollum ◽  
Mark Hilf ◽  
Mike Irey ◽  
Weiqi Luo ◽  
Tim Gottwald

Huanglongbing (HLB) disease is the most serious threat to citrus production worldwide and, in the last decade, has devastated the Florida citrus industry. In the United States, HLB is associated with the phloem-limited α-proteobacterium ‘Candidatus Liberibacter asiaticus’ and its insect vector, the Asian citrus psyllid (ACP; Diaphorina citri). Significant effort is being put forth to develop novel citrus germplasm that has a lower propensity to succumb to HLB than do currently available varieties. Effective methods of screening citrus germplasm for susceptibility to HLB are essential. In this study, we exposed small, grafted trees of 16 citrus types to free-ranging ACP vectors and ‘Ca. L. asiaticus’ inoculum in the greenhouse. During 45 weeks of exposure to ACP, the cumulative incidence of ‘Ca. L. asiaticus’ infection was 70%. Trees of Citrus macrophylla and C. medica were most susceptible to ‘Ca. L. asiaticus’, with 100% infection by the end of the test period in three trials, while the complex genetic hybrids ‘US 1-4-59’ and ‘Fallglo’ consistently were least susceptible, with approximately 30% infection. Results obtained in this greenhouse experiment showed good agreement with trends observed in the orchard, supporting the validity of our approach for screening citrus germplasm for susceptibility to HLB.


2011 ◽  
Vol 12 (1) ◽  
pp. 24 ◽  
Author(s):  
Yulu Xia ◽  
Gecheng Ouyang ◽  
Ronald A. Sequeira ◽  
Yu Takeuchi ◽  
Ignacio Baez ◽  
...  

The Asian form of huanglongbing (HLB) is caused by ‘Candidatus Liberibacter asiaticus (Las),’ a phloem-limited bacterium transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama. Nutrient management, together with other cultural practices such as pruning and irrigation, for mitigation of the disease has been practiced in China for many years. Our literature review, field survey, and interviews with Chinese scientists and growers indicate that these cultural practices were generally ineffective for the disease management. However, a nutritional approach in conjunction with other cultural practices such as irrigation can maintain grove productivity for a certain time depending on the type of citrus species/cultivars, the age of the trees, the propagation method of the plants, the Asian citrus psyllid (ACP) (Diaphorina citri Kuwayama) population, and other factors. Symptomatic mature pommelo (Citrus maxima Merr) and sweet orange (C. sinensis L. Osbeck) plants can commonly survive and maintain a certain level of productivity for an additional 4 to 5 years, even longer assuming vigorous ACP control. Accepted for publication 27 June 2011. Published 3 October 2011.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 262
Author(s):  
Nabil Killiny ◽  
Pedro Gonzalez-Blanco ◽  
Yulica Santos-Ortega ◽  
Fuad Al-Rimawi ◽  
Amit Levy ◽  
...  

Huánglóngbìng (HLB), citrus greening, is one of the most destructive diseases of citrus plants worldwide. In North America, HLB is caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus and is transmitted by the Asian citrus psyllid, Diaphorina citri. No cure exists at present, and the use of antibiotics for the control of HLB has gained interest due to the significant losses to the citrus industry. Because of unsatisfactory results when using foliar applications of antibiotics, concerns were raised regarding the uptake and translocation of these materials within trees. We, therefore, investigated a method that allows us to study the movement of antibiotic materials in citrus plants. Herein, we utilized a fluorescence-labeled penicillin, BOCILLIN™ FL-Penicillin (FL-penicillin), to study the uptake and translocation of penicillin in citrus plants. FL-penicillin was applied by puncture to the stem of young citrus seedlings and was traced by using fluorescence microscopy. After application, we detected FL-penicillin in the leaves and in the stem xylem and phloem tissues above and below the application site in both intact and partially bark-girdled citrus seedlings, indicating that it is easily taken up and transported through the plant vascular system. In addition, we detected FL-penicillin in the gut of D. citri, which were allowed to feed on the treated plants, suggesting translocation of this molecule into the vascular tissue. We propose that the use of fluorescent-labeled molecules could be an effective tool for understanding the uptake and translocation of antibiotics and other macromolecules in plants and insects.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 683-683 ◽  
Author(s):  
G. Cellier ◽  
A. Moreau ◽  
N. Cassam ◽  
B. Hostachy ◽  
P. Ryckewaert ◽  
...  

Huanglongbing is an unculturable vascular citrus pathogen transmitted from infected to healthy plants through grafting or by citrus psyllids, Diaphorina citri mainly in Asia and America and Trioza erytreae in Africa. This phloem limited gram-negative bacterium causes dramatic yield losses and is classified into three species based on 16S rDNA sequence analysis (2): (i) ‘Candidatus Liberibacter asiaticus’ (Las), the most epidemiologically active, widespread and heat tolerant species; (ii) ‘Ca. L. africanus’ (Laf), only found in Africa; and (iii) the newly described ‘Ca. L. americanus’ (Lam), which appeared in 2005 in Brazil (5). Considered as a quarantine organism in America and Europe, Las is actively affecting North America and Asia, and research is leading toward psyllid management and resistance breeding. Despite the fact that Reunion Island has successfully controlled Las by introducing a psyllid parasitoid, Tamarixia radiata (1), this strategy was less effective or reproducible within other territories. D. citri was first detected in Guadeloupe in 1998, where the control of the the psyllid population has been effective with T. radiata (3); and was first detected in Martinique in 2012. Following the outbreak in the United States and the Caribbean, and also supported by reports of symptoms in citrus orchards, local National Plant Protection Organizations (NPPO) organized a detection survey across both islands to verify the occurrence of Huanglongbing. Since 2012, 450 sites were prospected each year in Martinique and Guadeloupe, where 20 leaves from 10 to 30 trees were analyzed. DNA extraction was performed (DNeasy Plant Mini Kit, Qiagen) on fresh or dried leaf midribs, along with negative control midribs (Citrus paradisi ‘Star Rubis’) and PCR amplification was done with the species-specific primers A2/J5 (4) and GB1/GB3 (5). Only Las-specific 703-bp amplicons were obtained (n = 43) and 20 were sequenced (Beckman Coulter Genomics, United Kingdom; sequences available through GenBank Accession Nos. KF699074 to KF699093) and blasted against the National Center for Biotechnology Information non-redondant database (NCBI-nr). BLAST analysis revealed 100% identity with the 50S ribosomal protein subunit L1 (rplA) and L10 (rplJ) of ‘Ca. L. asiaticus’ (all strains), and no significant homology to other organisms. Additionally, sequence assembly on a reference genome (NC_012985) showed 100% homology. Huanglongbing was detected in Guadeloupe on March 2012 at Le Moule (East coast) in a Tahiti lime orchard (C. latifolia) and crossed the island in 6 months. Las was detected in Martinique on May 2013 on Tahiti lime (C. latifolia) at Bellefontaine (Northwest) in a private garden and at Le Lorrain (Northeast) in an orchard. Other species from the Rutaceae family were affected by HLB (C. reticulat and C. sinensis) on both islands; however, few of the positive samples showed HLB symptoms (blotchy mottle patterns and green islands on leaves), but presented symptoms similar to nutrient deficiencies. Despite the former presence of T. radiata in Guadeloupe and its detection in Martinique a few weeks after the detection of D. citri, where it had a mean parasitism rate of 70%, an outbreak of HLB spread across both islands. These analyses confirm the presence of HLB in Martinique and Guadeloupe and to our knowledge represent the first report of Las in the French West Indies. Introduction events remain unclear, but this report raises the importance of plant certification, psyllid population control, and surveillance of territories close to the French West Indies, with regards to the risk that HLB presents to citrus production worldwide. References: (1) B. Aubert et al. Fruits. 38, 1983. (2) J. M. Bové. J. Plant Pathol. 88:1, 2006. (3) J. Etienne et al. Fruits. 56:05, 2001. (4) A. Hocquellet et al. Mol. Cell. Probes 13:5, 1999. (5) D. C. Teixeira et al. Mol. Cell. Probes 19:3, 2005.


HortScience ◽  
2019 ◽  
Vol 54 (8) ◽  
pp. 1357-1360 ◽  
Author(s):  
Ed Etxeberria ◽  
Pedro Gonzalez ◽  
Ariel Singerman ◽  
Timothy Ebert

Monitoring the health of Huanglongbing-affected citrus trees by following changes in leaf Candidatus Liberibacter asiaticus (CLas) titer has an inherent element of imprecision because CLas titer varies considerably within the tree canopy and with calendar seasons. In addition, the destructive sampling method used to determine CLas titer entails a different set of leaves per sampling period adding to the inconsistency and inexactitude of the results. To overcome these ambiguities and to reduce the numerical variability between samples, we developed an experimental method that analyzes portions of the same treated leaves for up to four sampling periods. By assaying subsamples of adjacent locations of the same leaf, random variability was significantly reduced, and comparative analysis can be carried out with greater precision.


Sign in / Sign up

Export Citation Format

Share Document