scholarly journals Biological and Molecular Diversity of Cucumber green mottle mosaic virus in Spain

Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 977-984 ◽  
Author(s):  
Oscar Crespo ◽  
Dirk Janssen ◽  
Carmen García ◽  
Leticia Ruiz

The complete RNA genome from Cucumber green mottle mosaic virus (CGMMV) (Alm08), collected during 2009 in cucumber crops located in Spain, was found to be 6,422 nucleotides long. The nucleotide sequence shared the highest identity with isolates from Russia (GQ495274, GQ495275, FJ848666) as do nucleotide sequences of partial CP and MP genes described in Spain since 2005. All the partial genome sequences including RdRp, CP, and MP from 26 isolates collected from 2013 to 2015 in the southeast of Spain, and from seven isolates of other parts of the world, suggest that they grouped in two major clusters: one cluster (I) included 14 isolates collected between 2013 and 2014, and also reference isolates from France, the Netherlands, and Uzbekistan. A second cluster (II) grouped 12 isolates, which were mostly collected in 2015 together with those from Japan, South Korea, and Canada. For the first time, CGMMV isolates of different geographical origin were found coinfecting the same crop and territory. A host range study revealed that representative isolates of cluster II, but not from cluster I, produced local lesions in Chenopodium amaranticolor. RT-PCR using a common primer pair for CGMMV followed by restriction enzyme analysis with KpnI allowed distinguishing cluster I from II CGMMV isolates.

Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 723-728 ◽  
Author(s):  
C. Vaïanopoulos ◽  
A. Legrève ◽  
C. Lorca ◽  
V. Moreau ◽  
S. Steyer ◽  
...  

In order to assess the occurrence of Wheat spindle streak mosaic virus (WSSMV) in Belgium, a reverse-transcription polymerase chain reaction (RT-PCR) was developed, targeting WSSMV isolates from Canada, France, Germany, Italy, and the United States. The primers also were designed for virus quantification by real-time RT-PCR with SYBR-Green. No cross-reaction with soilborne cereal viruses such as Barley mild mosaic virus, Barley yellow mosaic virus, Soilborne cereal mosaic virus, and Soil-borne wheat mosaic virus was observed. The RT-PCR and real-time quantitative RT-PCR allowed a more sensitive detection of WSSMV than enzymelinked immunosorbent assay. The incidence of WSSMV in Belgium was evaluated using a bioassay with wheat cvs. Cezanne and Savannah and rye cv. Halo, grown in 104 Belgian soils. The presence of WSSMV was detected from plants grown in 32% of the soils. The RT-PCR methods developed here, combined with large sampling, allowed WSSMV to be detected for the first time in Belgium. The real-time quantitative RT-PCR was developed as a tool for evaluating the resistance to WSSMV by quantifying the virus concentration in wheat cultivars.


Plant Disease ◽  
2007 ◽  
Vol 91 (12) ◽  
pp. 1682-1682 ◽  
Author(s):  
J. Tang ◽  
G. R. G. Clover ◽  
B. J. R. Alexander

Apium virus Y (ApVY) has been detected for the first time in New Zealand. In January 2006, leaf mosaic and vein-banding symptoms were observed on cultivated celery (Apium graveolens cv. Tongo) in Wanganui, New Zealand. Symptoms were widespread and seen in several paddocks. Similar symptoms were also observed in poison hemlock (Conium maculatum), a weed commonly found growing along the edges of the crop. Chenopodium amaranticolor and C. quinoa plants inoculated with leaf sap from a single, symptomatic celery or hemlock plant developed necrotic local spots after 9 and 12 days, respectively. Six Nicotiana spp. did not develop symptoms and were not tested further. Electron microscopy of sap from the celery, hemlock, and C. quinoa plants revealed the presence of elongated flexuous virus particles, 650 to 850 nm long. Symptomatic plants of these three species were tested for ApVY by reverse transcription (RT)-PCR using novel forward (5′-ATGATGCGTGGTTTGAAGG-3′) and reverse (5′-CTTGGTGCGTGAGTTCTTG-3′) primers specific to the coat protein gene (GenBank Accession No. AF203529). Amplicons of the expected size (approximately 425 bp) were obtained from all samples, and an amplicon from celery was sequenced (GenBank Accession No. EU127499). Comparison with ApVY sequences in GenBank confirmed the identity of the product, which had 97 to 99% nucleotide identity with GenBank Accession Nos. AF 203529, AF207594, and AY049716. The effect of ApVY on celery is unknown. ApVY has recently been described and infects three species of Apiaceae in Australia (2). In this study, diseased celery, but not the hemlock plants, were found to be coinfected with Celery mosaic virus (CeMV) by enzyme-linked immunsorbent assays with CeMV-specific antibodies (Loewe Biochemica GmbH, Sauerlach, Germany). Therefore, the symptoms observed in celery may be induced by ApVY or CeMV. CeMV is a serious disease of celery in New Zealand (1) and CeMV symptoms may mask the presence of ApVY. References: (1) P. R. Fry and C. H. Procter. N. Z. Commer. Grower 24:23, 1968. (2) J. Moran et al. Arch. Virol. 147:1855, 2002.


Author(s):  
Lígia Maria Lembo Duarte ◽  
Ana Nóbrega Toscano Maria Amélia Vaz Ale ◽  
Eliana Borges Rivas ◽  
Ricardo Harakava

O mercado de flores e plantas ornamentais vem crescendo consideravelmente nos últimos anos, no Brasil. É importante destacar que, paralelamente ao crescimento das exportações, um aumento na importação de flores e plantas ornamentais vem sendo observado. Porém, apesar da introdução de novas espécies e variedades, são poucos os relatos de doenças causadas por vírus, possivelmente porque alguns induzem infecção latente, dificultando sua identificação. Assim, este trabalho teve como objetivo identificar biológica, sorológica e molecularmente o vírus presente em plantas de <I>Torenia</I> sp. assintomáticas, provenientes de região produtora do Estado de São Paulo. Além disso, uma medida de controle alternativo foi proposta. Verificou-se que o vírus isolado de torênia induziu, em hospedeiras experimentais, sintomas semelhantes aos causados por espécies do gênero Potexvirus. Este resultado foi confirmado por RT-PCR, utilizandose oligonucleotídeos específicos para <i>potexvirus</i>. Testes sorológicos, bem como análises das seqüências obtidas e filogenéticas foram fundamentais para a identificação do <i>Alternanthera mosaic virus</i> (AltMV), denominado de AltMV-T. Convém salientar que este vírus, assim como os potexvirus, de modo geral, são disseminados na cultura por instrumentos de poda e por contato. Visando um controle eficiente e de baixo custo, extrato foliar de <i>Mirabilis jalapa</i> foi pulverizado em plantas de <i>Chenopodium amaranticolor</i>, antes do corte das folhas com lâmina previamente imersa em inóculo viral. Verificou-se uma inibição da infecção causada pelo AltMV-T em 83%. Esse resultado viabiliza a utilização de extrato foliar de <I>M. jalapa</I>, antes dos procedimentos de desbaste das plantas, minimizando-se a disseminação do vírus pela cultura.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1108-1108 ◽  
Author(s):  
C. Córdoba ◽  
A. García-Rández ◽  
N. Montaño ◽  
C. Jordá

In July 2003, noticeable deformations of leaves were observed on a local variety of Capsicum chinense, also called ‘Aji dulce’, from a pepper plantation located in Venezuela, (Monagas State). ‘Aji dulce’ is a basic ingredient of the Venezuelan gastronomy with an estimated cultivated area of 2,000 ha. The seeds of this local pepper are obtained by the growers who reproduce and multiply their own seeds every year. Seeds of affected plants were sent to our laboratory, and a group of approximately 100 seeds was sown in a controlled greenhouse that belongs to the Polytechnic University of Valencia, Spain. Three months later, obvious curling and bubbling developed on the leaves of the plants. Extracts of symptomatic plants tested negative for Tomato mosaic virus (ToMV), Tobacco mosaic virus (TMV), Pepper mild mottle virus (PMMV), and Tobacco etch virus (TEV) by double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA) with policlonal antibodies specific to each virus (Loewe Biochemica GMBH, Sauerlach, Germany; Phyto-Diagnostics, INRA, France). Total RNA was isolated from 0.5 g of original seed sent from Venezuela and from 25 samples of leaves of plants grown in the greenhouse with an RNeasy Plant Mini Kit (Qiagen Sciences, Germantown, Maryland). The RNA isolated was used in reverse transcription-polymerase chain reaction (RT-PCR) with specific primers for Tobacco mild green mosaic virus (TMGMV) (1) predicted to amplify a 530 bp of the coat protein region. From all samples, a RT-PCR product of the expected size was obtained and then sequenced. BLAST analysis of one sequence (GenBank Accession No. DQ460731) showed high levels of identity with TMGMV isolates, with more than 99% nucleotide identity with the DSMZ PV-112 isolate (GenBank Accession No. AJ429096). The symptomatology observed on pepper plants, the TMGMV RT-PCR assay, and the consensus of sequenced regions with TMGMV lead us to conclude that TMGMV was the causal agent of the diseased C. chinense plants. Although TMGMV has a wide plant host range occurring worldwide (1), to our knowledge, this is not only the first time TMGMV has been detected in Venezuela, but also the first report of TMGMV in C. chinense in Venezuela and the first reliable probe of the TMGMV seed transmission. Reference: (1) J. Cohen et al. Ann. Appl. Biol. 138:153, 2001.


Plant Disease ◽  
2007 ◽  
Vol 91 (3) ◽  
pp. 322-322 ◽  
Author(s):  
L. Cardin ◽  
J. P. Onesto ◽  
I. Bornard ◽  
B. Moury

Phlox paniculata L., a perennial plant from the family Polemoniaceae, is cultivated as an ornamental in gardens and for cut-flower production. In spring 2003, two types of symptoms were observed in P. paniculata plants grown for cut flowers on a farm in the Var department, France. Some plants showed a mild leaf mosaic while others showed leaf browning and delayed growth. In plants showing mild mosaic, Cucumber mosaic virus (CMV) was detected on the basis of the symptoms exhibited by a range of inoculated plants, the observation of isometric particles (approximately 30 nm) with the electron microscope in crude sap preparations from the infected plants, and the positive reaction in double-antibody sandwich (DAS)-ELISA to polyclonal antibodies raised against CMV (1). In double-immunodiffusion analysis, the five tested isolates were shown to belong to group II of CMV strains. To determine if CMV was responsible for the symptoms observed, one isolate was multiplied in Nicotiana tabacum cv. Xanthi-nc plants after isolation from local lesions on Vigna unguiculata and mechanically inoculated to 12 1-year-old P. paniculata plants. At 3 months post inoculation (mpi), all plants showed mild mosaic and CMV was detected by DAS-ELISA. In sap preparations from P. paniculata plants showing leaf browning symptoms, rod-shaped particles with two distinct sizes of 190 to 210 and 70 to 90 nm long, typical of those associated with tobraviruses, were revealed using electron microscopy. Local lesions typical of Tobacco rattle virus (TRV) were observed after inoculation of N. tabacum cv. Xanthi-nc, Chenopodium amaranticolor, and C. quinoa. Total nucleic acid preparations were prepared from symptomatic plants, and amplicons of the expected size (463 bp) were generated by reverse-transcription (RT)-PCR using primers specific to TRV RNA 1 (4). The nucleotide sequence of one amplicon was 93.6% identical to the sequence of a reference TRV isolate (GenBank Accession No. AJ586803). Twelve 1-year-old P. paniculata plants were mechanically inoculated with an extract of infected tissues from one symptomatic P. paniculata plant. TRV was detected 2 to 6 mpi in apical leaves of all inoculated plants by RT-PCR, although the plants did not express symptoms. Since no other pathogens were detected in the source plants, it is plausible that the lack of symptoms in back-inoculated plants is either due to a long incubation period or an interaction with particular environmental factors such as cold conditions. The survey of approximately 200 plants revealed that approximately 7, 10, and 1% were infected by TRV, CMV, or by both viruses, respectively. CMV and TRV were previously detected in P. paniculata in Latvian SSR and in Lithuania (2,3). These results show that sanitary selection of P. paniculata prior to vegetative propagation should include a screening for TRV and CMV infections. References: (1) J.-C. Devergne et al. Ann. Phytopathol. 10:233, 1978. (2) Y. Ignab and A. Putnaergle. Tr. Latv. S.-Kh. Akad. 118:27, 1977. (3) M. Navalinskiene and M. Samuitiene. Biologija 1:52, 1996. (4) D. J. Robinson. J. Virol. Methods 40:57, 1992.


2020 ◽  
Vol 11 ◽  
Author(s):  
John Hammond ◽  
Michael Reinsel ◽  
Samuel Grinstead ◽  
Ben Lockhart ◽  
Ramon Jordan ◽  
...  

Multiple carlaviruses infect various ornamental plants, often having limited host ranges and causing minor symptoms, yet often reducing yield or quality. In this study we have identified a mixed infection of butterbur mosaic virus (ButMV) and helenium virus S (HelVS) from a plant of veronica (Veronica sp.) showing foliar mosaic and distortion. Carlavirus-like particles were observed by transmission electron microscopy (TEM), and RNA from partially purified virions was amplified by random RT-PCR, yielding clones of 439–1,385 bp. Two partially overlapping clones including coat protein (CP) sequence, and two of four partial replicase clones, were closely related to ButMV-J (AB517596), previously reported only from butterbur (Petasites japonicus) in Japan. Two other partial replicase clones showed lower identity to multiple carlaviruses. Generic primers which amplify the 3′-terminal region of multiple carlaviruses yielded clones of three distinct sequences: (1) with 98% nt identity to HelVS; (2) ButMV-A, showing 82% nt identity to ButMV-J; and (3) ButMV-B, with 78% nt identity to each of ButMV-J and ButMV-A. Further amplification of upstream fragments revealed that ButMV-B had an internal deletion in TGB1, confirmed using isolate-specific primers. Near-complete genomes of both ButMV-A and ButMV-B were obtained from next-generation sequencing (NGS), confirming the deletion within ButMV-B, which is presumably maintained through complementation by ButMV-A. HelVS was previously reported only from Helenium hybrids and Impatiens holstii. A near-complete HelVS genome was obtained for the first time by NGS from the same sample. Additional Veronica hybrids infected with HelVS were identified by TEM and RT-PCR, including cv. ‘Sunny Border Blue’ which was also subjected to NGS. This resulted in assembly of an 8,615 nt near-complete HelVS genome, with high identity to that from the mixed infection. The predicted CP sequence has 96% amino acid (aa) identity to HelVS from helenium (Q00556). Other ORFs show a maximum of 54% (TGB3) to 68% (NABP) aa identity to the equivalent ORFs of other carlaviruses. These results demonstrate for the first time maintenance by complementation of a carlavirus isolate with a major deletion in an essential gene, and confirm that HelVS is a distinct species in the genus Carlavirus.


Plant Disease ◽  
2021 ◽  
Author(s):  
Gabriel Madoglio Favara ◽  
Felipe Franco de Oliverira ◽  
Camila Geovana Ferro ◽  
Heron Delgado Kraide ◽  
Eike Yudi Nishimura Carmo ◽  
...  

Tradescantia spathacea (family Commelinaceae) is cultivated worldwide as an ornamental (Golczyk et al., 2013) and as medicinal plant (Tan et al., 2020). In 2019, 90 of ~180 plants of T. spathacea, grown in two beds of 4 m2 and exhibiting leaf mosaic were found in an experimental area at ESALQ/USP (Piracicaba municipality, São Paulo state, Brazil). Potyvirus-like flexuous filamentous particles were observed by transmission electron microscopy in foliar extracts of two symptomatic plants stained with 1% uranyl acetate. Total RNA was extracted using the Purelink viral RNA/DNA kit (Thermo Fisher Scientific) from leaves of two symptomatic plants and separately subjected to a reverse transcription polymerase chain reaction (RT-PCR). The potyviruses degenerate pairs of primers CIFor/CIRev (Ha et al. 2008), which amplifies a fragment corresponding to part of the cylindrical inclusion protein gene, and WCIEN/PV1 (Maciel et al. 2011), which amplifies a fragment containing part of the capsid protein gene and the 3′ untranslated region, were used. The expected amplicons (~700bp) were obtained from both total RNA extracts. Two amplicons from one sample were purified using the Wizard SV Gel and PCR Clean-Up System kit (Promega) and directly sequenced in both directions at Macrogen Inc (Seoul, South Korea). The obtained nucleotide sequences (GenBank MW430005 and MW503934) shared 95.32% and 97.79% nucleotide identity, respectively, with the corresponding sequences of the Brazilian isolate of the potyvirus costus stripe mosaic virus (CoSMV, MK286375) (Alexandre et al. 2020). Extract from an infected plant of T. spathacea was mechanically inoculated in 10 healthy plants of T. spathacea and two plants each of the following species: Capsicum annuum, Chenopodium amaranticolor, Commelina benghalensis, Datura stramonium, Gomphrena globosa, Nicandra physaloides, Nicotiana tabacum cvs. Turkish and Samsun, Solanum lycopersicum, T. palida, and T. zebrina. All T. spathacea plants exhibited mosaic and severe leaf malformation. C. benghalensis plants developed mild mosaic, whereas infected T. zebrina plants were asymptomatic. The plants of other species were not infected. RT-PCR with specific CoSMV primers CoSMVHC-F and CoSMVHC-R (Alexandre et al. 2020) confirmed the infection. Nucleotide sequences of amplicons obtained from experimentally inoculated T. spathacea and T. zebrina (MW430007 and MW430008) shared 94.56% and 94.94% identity with the corresponding sequence of a Brazilian CoSMV isolate (MK286375). None of eight virus-free plants of T. spathacea inoculated with CoSMV using Aphis craccivora exhibited symptoms, nor was CoSMV detected by RT-PCR. Lack of CoSMV transmission by A. solanella, Myzus persicae, and Uroleucon sonchi was previously reported (Alexandre et al. 2020). T. spathacea plants are commonly propagated vegetatively, and by seeds. Virus-free seeds, if available, can provide an efficient and easy way to obtain healthy plants. Only three viruses were reported in plants of the genus Tradescantia: Commelina mosaic virus, tradescantia mild mosaic virus, and a not fully characterized potyvirus (Baker and Zettler, 1988; Ciuffo et al., 2006; Kitajima 2020). CoSMV was recently reported infecting Costus spiralis and C. comosus (Alexandre et al. 2020). As far as we know, this is the first report of CoSMV infecting T. spathacea plants.


Sign in / Sign up

Export Citation Format

Share Document