scholarly journals Occurrence of Potato Tuber Necrotic Isolates of Potato virus Y in a Commercial Tobacco Field in Southern Ontario, Canada

Plant Disease ◽  
2008 ◽  
Vol 92 (11) ◽  
pp. 1586-1586 ◽  
Author(s):  
H. Xu

Most strains of Potato virus Y (PVY) can infect tobacco plants (Nicotiana tabacum) and cause vein clearing followed by leaf mottling, except the PVYN strain, which induces severe vein necrosis. Some isolates within the PVYN strain also cause potato necrotic tuber ringspot disease, but these have not been reported from Canadian tobacco fields. PVYNTN isolates include European (EU) and North American (NA) types that are serologically identical to PVYN, but can be distinguished by nucleic acid-based assays and potato bioassay (1,2). Some PVY isolates, PVYN-Wi or PVYN:O, resulting from a recombination between RNA molecules of PVYN and the common strain, PVYO, are identified as PVYO in serological assays, but induce necrosis in tobacco (2). In August of 2007, two samples of tobacco (N. tabacum, unknown cultivar) leaves showing necrotic symptoms resembling those induced by PVYN, PVYNTN, or PVYN-Wi were collected from a tobacco field in southern Ontario, Canada and submitted to the Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE. Virus in both samples (PVY-204 and PVY-205) reacted with PVYN-specific antibodies 1F5 and 4E7 (3) and induced vein necrosis in tobacco (N. tabacum cv. Samsun). A multiplex reverse transcription (RT)-PCR assay (1) for the simultaneous detection and differentiation of various PVY strains amplified two fragments (181 and 452 bp) associated with EU-PVYNTN isolates. Restriction fragment length polymorphism (RFLP) analysis targeting the P1 and NIb gene (3) also indicated that PVY-204 and PVY-205 were EU-PVYNTN isolates. Known isolates of PVYO, PVYN, and NA-PVYNTN were used in all evaluations as references (3). Furthermore, the nucleotide sequences of the P1 and NIb genes of PVY-204 and PVY-205 determined by automated cycle sequencing (3) and subjected to phylogenetic analysis indicated that the nucleotide and deduced amino acid sequences of both isolates were 96 and 95% identical, respectively, to NA-PVYNTN isolates reported from Canada, but 99% identical (both nucleotide and amino acid) to EU-PVYNTN isolates from Europe and Mexico (3). Potato (cv. Yukon Gold) plants mechanically inoculated with leaf sap from tobacco (N. tabacum cv. Samsun) infected with PVY-204 and PVY-205 developed various leaf symptoms including severe local and systemic necrotic lesions, leaf wilting, and leaf death in 3 to 5 weeks postinoculation under greenhouse conditions. The infected plants recovered in 5 to 6 weeks. Potato (cv. Yukon Gold) plants inoculated with leaf sap from tobacco (N. tabacum cv. Samsun) infected with a PVYNTN isolate (HX8) (3) and healthy tobacco leaf sap were used as positive and negative controls. The number and yield of the tubers harvested from infected plants were significantly reduced (50%), and PVY-204 and PVY-205 induced typical potato tuber necrotic ringspot disease in 52.6% of the progeny tubers with an average disease index of 0.364 (C. Kerlan and K. Charlet-Ramage, EAPR Virology Meeting Proceedings, 1998). PVYNTN was detected by RT-PCR and RFLP in all necrotic tubers and 66.7% of the asymptomatic tubers. Some tubers (15.8%) harvested from the infected plants were negative in RT-PCR targeting either P1 protein gene or NIb gene and showed neither external nor internal necrotic symptom. To my knowledge, this is the first evidence of the occurrence of PVYNTN isolates in field-grown tobacco plants in Canada. References: (1) J. H. Lorenzen et al. Plant Dis. 90:935, 2006. (2) R. Singh et al. Arch Virol. 153:1, 2008. (3) H. Xu et al. Can. J. Plant Pathol. 27:125, 2005.

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 278-280
Author(s):  
J. Ptáček ◽  
P. Dědič ◽  
J. Matoušek

Fourteen Potato virus Y (PVY) isolates were characterized. They represented PVYN strain only. However, application of serological and molecular genetic methods led to a more complicated characterization. For example, five isolates induced necrotic symptoms on tobacco plants typical of PVY<sup>N</sup>, despite reacting as PVY<sup>O</sup> serologically. Moreover, the PVY isolates were not identical according to molecular genetic properties. Typical PVY<sup>NTN</sup> PCR products were observed for 11 isolates, but four of them (Hr220-5, Hr387-7, Nord 242 and Syn1Scot) did not produce potato tuber necrotic symptoms in infected cultivars. An immunocapture RT-PCR probing was developed using a set of 24 primer pairs derived from eight regions of the PVY genome. Using this method, five out of seven PVY<sup>NTN</sup> isolates including the Czech standard PVY<sup>NTN</sup> from the potato cv. Nicola were found to be identical. However, two PVY<sup>NTN</sup> isolates and all the other probed PVY samples showed unique patterns, suggesting specific differences at the nucleotide level. This method enabled specific identification of individual isolates variability even within different PVY strains.


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1371-1371 ◽  
Author(s):  
A. V. Karasev ◽  
T. Meacham ◽  
X. Hu ◽  
J. Whitworth ◽  
S. M. Gray ◽  
...  

Potato virus Y (PVY) causes substantial losses in potato production by decreasing yields and affecting the quality of potato tubers. Management of PVY in potato is dependent primarily on potato seed certification programs to prevent or limit initial levels of virus inoculum. Prior to 1990, the ordinary strain of PVY (PVYO) was the predominant virus in North America. PVYO induces clear foliar symptoms in many potato cultivars, allowing successful management in seed potato through a combination of visual inspections and limited laboratory testing. In recent years, necrotic strains of PVY (PVYN, PVYNTN, and PVYN:O) have begun to spread in the United States, many of which induce mild symptoms in potato, making them more difficult to manage through visual inspections. In addition to reducing yield, necrotic isolates may also cause external and internal damage in tubers of susceptible cultivars, which is known as potato tuber necrotic ringspot disease (PTNRD). Tuber necrotic strains of PVY have been reported across the northern United States (1,2,4), although limited information is available on their incidence and spread in commercial potato production. During June and July of 2007, 38 random samples were collected from three different commercial fields displaying disease problems (cvs. Russet Ranger, Alturas, and Russet Burbank) in the vicinity of Idaho Falls, ID. Plants collected showed various degrees of mosaic and leaf yellowing. By using double-antibody sandwich (DAS)-ELISA and reverse transcription (RT)-PCR, 25 of these plants were identified as PVY positive. The mutiplex RT-PCR assay (3) confirmed that nine plants were infected with PVYNTN and 11 with PVYN:O. No RT-PCR products were amplified from five samples. During September and October of 2007, 25 tuber samples (cv. Russet Burbank) showing various degrees of unusual internal symptoms (e.g., brown spots) were collected near Idaho Falls, ID. Twenty-two tubers were found PVY positive by DAS-ELISA, and multiplex RT-PCR determined 13 of those were PVYNTN, three were PVYO, one was a PVYNTN/N:O mixture, and one was a PVYO/N:O mixture. No RT-PCR products were amplified from four samples. In October 2007, six tubers showing distinct external tuber damage characteristic of PTNRD (cv. Highland Russet) were collected near Twin Falls, ID. All six tubers were determined to be PVY positive by DAS-ELISA, and RT-PCR identified five as infected with PVYNTN and one with PVYN:O. All the mixtures were easily separated by inoculating tobacco plants followed by subsequent testing of individual plants. Asymptomatic tubers from the same lot not showing PTNRD damage were found PVY negative by DAS-ELISA and RT-PCR. All PVYNTN isolates collected during 2007 were inoculated into tobacco plants (Nicotiana tabacum L. cv. Xanthi) and confirmed to induce systemic vein necrosis. Limited sequencing of four of the PVYNTN isolates determined that they contained recombinant junctions 2 and 3, identifying them as being related to the European strain of PVYNTN (3). The data suggest an increase in distribution and incidence of necrotic strains of PVY in commercial, potato-production areas in Idaho during an outbreak in 2007 and the potential for an increase in PTNRD. References: (1) P. M. Baldauf et al. Plant Dis. 90:559, 2006. (2) J. M. Crosslin et al. Plant Dis. 90:1102, 2006. (3) J. H. Lorenzen et al. Plant Dis. 90:935, 2006. (4) L. M. Piche et al. Phytopathology 94:1368, 2004.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 641-644 ◽  
Author(s):  
Manphool S. Fageria ◽  
Mathuresh Singh ◽  
Upeksha Nanayakkara ◽  
Yvan Pelletier ◽  
Xianzhou Nie ◽  
...  

The current-season spread of Potato virus Y (PVY) was investigated in New Brunswick, Canada, in 11 potato fields planted with six different cultivars in 2009 and 2010. In all, 100 plants selected from each field were monitored for current-season PVY infections using enzyme-linked immunosorbent assay (ELISA) and real-time reverse-transcription polymerase chain reaction (RT-PCR) assay. Average PVY incidence in fields increased from 0.6% in 2009 and 2% in 2010 in the leaves to 20.3% in 2009 and 21.9% in 2010 in the tubers at the time of harvest. In individual fields, PVY incidence in tubers reached as high as 37% in 2009 and 39% in 2010 at the time of harvest. Real-time RT-PCR assay detected more samples with PVY from leaves than did ELISA. A higher number of positive samples was also detected with real-time RT-PCR from growing tubers compared with the leaves collected from the same plant at the same sampling time. PVY incidence determined from the growing tubers showed a significant positive correlation with the PVY incidence of tubers after harvest. Preharvest testing provides another option to growers to either top-kill the crop immediately to secure the seed market when the PVY incidence is low or leave the tubers to develop further for table or processing purposes when incidence of PVY is high.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
X. D. Li ◽  
Y. Q. Li ◽  
H. G. Wang

Flue-cured tobacco is an important crop in Henan Province, China. During the 2000 growing season, many tobacco plants showed various degrees of mottling, mosaic, vein clearing, or vein necrosis in most of the counties. Some plants even died at an early stage of growth. A survey was conducted in May-June in several tobacco-growing counties, and the incidence of symptomatic plants in individual fields ranged from 10 to 85%. The most widely planted tobacco varieties, NC89, K326, and K346, were highly susceptible. Symptomatic plants were collected from Jiaxian and Xiangcheng counties and samples were tested by enzyme-linked immunosorbent assay for Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), and Potato virus X (PVX). Of 65 samples tested, 21 were positive for only PVY, 16 positive for only CMV, one each was positive for only TMV or PVX. Nineteen samples were doubly infected with various combinations of these viruses and six were infected with combinations of three viruses. The causal agent(s) in the remaining sample could not be determined. In total, CMV was detected in 40 samples, PVY in 38, PVX in 10, and TMV in 7 samples. TMV and CMV used to be the most important viruses and PVY occurred only rarely. But PVY has become prevalent in Henan and in neighboring Shandong province (2). CMV and TMV were reported to be the most prevalent viruses in Shanxi (1) and Fujian Provinces (3). Because resistant varieties are not available, and mixed infections are more common, the results presented here explain why huge damage is occurring in tobacco crops in recent years. Some varieties are partially resistant to TMV and CMV but the varieties commonly grown are highly susceptible to PVY. Therefore, breeding for resistance to viruses, especially to PVY, is urgent to control the occurrence of tobacco viral diseases. References: (1) J. L. Cheng et al. Acta Tabacaria Sin. 4:43, 1998. (2) J. B. Wang et al. Chinese Tobacco Sci. 1:26, 1998. (3) L. H. Xie et al. Acta Tabacaria Sin. 2:25, 1994.


2016 ◽  
Vol 34 (3) ◽  
pp. 317-328 ◽  
Author(s):  
Pablo Gutiérrez S. ◽  
Mauricio Marín M. ◽  
Daniel Muñoz E.

Potato virus Y (PVY) is one of the most severe viruses affecting the production of potato (Solanum tuberosum) in the world. This study presents a detailed molecular analysis using nextgeneration sequencing (NGS), IC-RT-qPCR and RT-PCR on the PVY isolates infecting seed-tubers and foliage of potato plants cv. Diacol-Capiro in La Union (Antioquia, Colombia). Analysis of incidence by IC-RT-qPCR in 15 random leaf samples of three cultivation plots and fifteen sprouting tuber eye-buds reveal infection levels between 13.4 and 80%; a higher incidence of 86.7% was observed in seed-tuber samples with threshold cycle (Ct) values as low as 24.3. Genome assembly from a bulk of foliage samples resulted in a consensus PVY genome (PVY_LaUnionF) of 9,702 nt and 399 polymorphic sites within the polyprotein ORF; while the assembled genome from sprouts of tubers has 9,704 nt (PVY_LaUnionT) and contained only six polymorphic nucleotide sites. Phylogenetic analysis demonstrates that the PVY isolates from leaf samples are in the recombinant PVYNTN group (sequence identity >99%); while those from tuber sprouts are in the PVYN/NTN group with identities above 95%. Sanger sequencing of viral capsid suggests the presence of a third variant related to PVYO, a prevalent strain reported in potato fields worldwide.


2004 ◽  
Vol 17 (3) ◽  
pp. 322-329 ◽  
Author(s):  
Benoît Moury ◽  
Caroline Morel ◽  
Elisabeth Johansen ◽  
Laurent Guilbaud ◽  
Sylvie Souche ◽  
...  

The recessive resistance genes pot-1 and pvr2 in Lycopersicon hirsutum and Capsicum annuum, respectively, control Potato virus Y (PVY) accumulation in the inoculated leaves. Infectious cDNA molecules from two PVY isolates differing in their virulence toward these resistances were obtained using two different strategies. Chimeras constructed with these cDNA clones showed that a single nucleotide change corresponding to an amino acid substitution (Arg119His) in the central part of the viral protein genome-linked (VPg) was involved in virulence toward the pot-1 resistance. On the other hand, 15 nucleotide changes corresponding to five putative amino acid differences in the same region of the VPg affected virulence toward the pvr21 and pvr22 resistances. Substitution models identified six and five codons within the central and C terminal parts of the VPg for PVY and for the related potyvirus Potato virus A, respectively, which undergo positive selection. This suggests that the role of the VPg-encoding region is determined by the protein and not by the viral RNA apart from its protein-encoding capacity.


Plant Disease ◽  
2021 ◽  
Author(s):  
Pengcheng Ding ◽  
Dexin Chen ◽  
Haixu Feng ◽  
Jiao Li ◽  
Hui Cao ◽  
...  

Potato is an important crop in Shanxi province located in north-central China. During 2019-2020, 319 potato leaf samples were collected from eight locations distributed in three major potato production areas in Shanxi. Bio-chip detection kit revealed the presence of several potato viruses, and among them potato virus Y (PVY) was the most common one, reaching the incidence of 87.8% of all symptomatic samples. The immuno-captured multiplex reverse transcription (RT)-PCR was used to identify strains for all 280 PVY-positive samples, unveiling 242 samples infected with a single strain of PVY (86.4%) and 38 (13.6%) with a mixed infection. Of samples with a single-strain infection, PVY -SYR-II accounted for 102 (42.1%), followed by PVYN-Wi (33, 13.6%) , PVY -SYR-I (28, 11.6%), 261-4 (22, 9.1%), PVYNTNa (20, 8.3%), PVYNTNb (19, 7.9%), and PVY -SYR-III (18, 7.4%). Seven isolates representing different recombinants were selected for whole genome sequencing. Phylogenetic and recombination analyses confirmed the RT-PCR based strain typing for all seven strains of PVY found in Shanxi. SXKL-12 is the first SYR-III strain from potato reported from China. However, unlike that in other known SYR-III isolates, the region positioned from 1,764 to1,902 nt in SXKL-12 shared the highest sequence identity of 82.2% with an uncharacterized PVY isolate, JL-23, from China. Interestingly, the PVYN-Wi isolate SXZY-40 also possessed a more divergent sequence for the region positioned from 6,156 to 6,276 nt than other N-Wi isolates known to date, sharing the highest identity of 86.6% with an uncharacterized Chinese PVY isolate, JL-11. Pathogenicity analysis of dominant strains PVY -SYR-II and PVYN-Wi in six local popular potato cultivars revealed that Kexin 13, Helan 15 and Jizhangshu 12 were susceptible to these two strains with mild mottling or mosaic symptoms expression, while three cultivars, Jinshu 16, Qingshu 9, Xisen 6 were found fully resistant.


2002 ◽  
Vol 51 (2) ◽  
pp. 117-126 ◽  
Author(s):  
N. Boonham ◽  
K. Walsh ◽  
M. Hims ◽  
S. Preston ◽  
J. North ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3110-3114
Author(s):  
Mariana Rodriguez-Rodriguez ◽  
Mohamad Chikh-Ali ◽  
Steven B. Johnson ◽  
Stewart M. Gray ◽  
Nellie Malseed ◽  
...  

Potato virus Y (PVY) is one of the main viruses affecting potato in Australia. However, molecular characterization of PVY isolates circulating in potato in different states of Australia has not yet been thoroughly conducted. Only nonrecombinant isolates of three biological PVY strains collected from potato were reported previously from Western Australia and one from Queensland. Here, PVY isolates collected from seed potato originating in Victoria, Australia, and printed on FTA cards, were subjected to strain typing by RT-PCR, with three isolates subjected to whole genome sequencing. All the 59 PVY isolates detected during two growing seasons were identified to be recombinants based on two RT-PCR assays. No nonrecombinant PVY isolates were identified. All the RT-PCR typed isolates belonged to the PVYNTN strain. Sequence analysis of the whole genomes of three isolates suggested a single introduction of the PVYNTN strain to Australia but provided no clues as to where this introduction originated. Given the association of the PVYNTN strain with potato tuber damage, growers in Australia should implement appropriate strategies to manage PVYNTN in potato.


Sign in / Sign up

Export Citation Format

Share Document