scholarly journals First Report of Powdery Mildew, Caused by Erysiphe cruciferarum, on Broccoli Raab in California

Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1093-1093 ◽  
Author(s):  
S. T. Koike ◽  
G. S. Saenz

Broccoli raab (Brassica rapa subsp. rapa), also known as rappini, is a leafy vegetable that is widely grown in Europe and has in recent years become an important crop in coastal California. During summer months in the Salinas Valley (Monterey County) in California, powdery mildew was observed on commercial field and greenhouse-grown plants. White ectophytic mycelial and conidial growth was present on leaves, causing chlorosis, and also developed on stems. Mycelia were amphigenous, in patches, often spreading to become effused. Appressoria were lobed and conidiophores were straight. Foot cells were cylindrical, measured 18 to 26 × 7 to 10 μm, and were followed by one to two cells of variable length. Conidia were produced singly, were cylindrical, and measured 35 to 50 × 12 to 21 μm with a length-to-width ratio greater than 2. No fibrosin bodies were observed in the conidia, and conidia germinated at the ends. Cleistothecia were not observed. The fungus was identified as Erysiphe cruciferarum Opiz ex Junell (1). Pathogenicity was demonstrated by gently pressing infected leaves having abundant sporulation onto leaves of potted broccoli raab (cv. Spring Raab), incubating the plants in a moist chamber for 48 h, and then maintaining plants in a greenhouse. After 10 to 13 days, powdery mildew colonies developed on the test plants. Uninoculated control plants did not develop powdery mildew. With the same inoculation procedure, potted broccoli (Brassica oleracea subsp. botrytis cv. Greenbelt) also became infected by the broccoli raab isolates. This is the first report characterizing this pathogen on broccoli raab in the state. Disease incidence and severity in field-planted crops were low, but greenhouse-grown plants became severely infected. Reference: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987.

Plant Disease ◽  
1998 ◽  
Vol 82 (6) ◽  
pp. 711-711 ◽  
Author(s):  
S. T. Koike ◽  
R. F. Smith

Tomatillo or husk tomato (Physalis ixocarpa Brot.) is an annual Solanaceous bush grown for its fruit, which are harvested when the fruit fill the enlarged calyx and are used primarily in Hispanic cooking. In the summer of 1997, commercial field-grown tomatillo in the Salinas Valley (Monterey County) was severely affected by a powdery mildew disease. Fungal growth was found on leaves, petioles, and calyces and resulted in twisting, desiccation, and premature senescence of the tissues. The mycelium was white to gray, ectophytic, amphigenous, and effuse. Mycelial appressoria were indistinct. Conidiophore foot cells were straight, cylindric, measured 36.1 to 61.1 µm (mean 47.0) × 11.1 to 13.9 µm (mean 11.7), and were followed by 1 to 3 shorter cells. Doliform conidia were formed in chains and measured 25.0 to 50.0 µm (mean 32.5) × 11.1 to 22.2 µm (mean 17.7). The length-to-width ratios of conidia generally were less than 2.0, and fibrosin bodies were present. Germ tubes usually were laterally inserted, lacked conspicuous appressoria, and were of the pannosa-type. Cleistothecia were not observed. Based on these characters, the fungus was identified as Sphaerotheca fusca (Fr.) Blumer, Beitr. Krypt.-Fl. Schweiz (1). Pathogenicity was confirmed by gently pressing infected leaves onto leaves of potted tomatillo. Inoculated plants were kept in a chamber at 100% humidity for 48 h, and then maintained in a greenhouse. Powdery mildew developed on inoculated plants after 12 to 14 days, while uninoculated plants did not develop disease. The experiment was conducted a second time and the results were the same. This is the first report of a powdery mildew disease of tomatillo in California. Reference: (1) U. Braun. Nova Hedwigia 89:1, 1987.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1163-1163 ◽  
Author(s):  
S. Gaetán ◽  
M. Madia

Canola (Brassica napus) is a developing oleaginous crop grown commercially in the Buenos Aires and Santa Fe provinces of Argentina. During the autumn of 2003, typical signs of powdery mildew were observed on canola plants in experimental field plots in Buenos Aires. Average disease incidence was 42% on 3- to 6-month-old canola cultivars developed in the following countries: Argentina (Eclipse, Impulse Master, Mistral, and Nolza); Australia (Oscar and Rainbow); Canada (Sentry); France (Cadillac, Camberra, and Capitol); and Sweden (Maskot, Sponsor, and Wildcat). The range of incidence on these cultivars was 35 to 93%. Other cultivars exhibited an apparent high level of resistance or escaped disease. These included: Charlton (Argentina); 46CO3, Dunkeld, Insignia, Mystic, Monty, Outback, Rivette, and Surpass 400 (Australia), and Caviar (France). Climatic conditions in Buenos Aires, especially rainfall, from March to May 2003 were apparently favorable for powdery mildew development. On susceptible cultivars, fungal growth was observed on leaves, stems, and pods that resulted in premature senescence of the tissues. The mycelium, with multilobed hausthoria, was white to gray, dense or fine, and in patches or covering the entire adaxial leaf surfaces. Appressoria were lobed and conidiophores were straight. Foot cells were cylindrical, straight, measured 35 to 42 × 7 to 10 μm, and were followed by two cells. Conidia were produced singly, cylindrical to ovoid, and measured 36 to 40 × 18 to 20 μm. The conidial length-to-width ratio was 2.0. No fibrosin bodies were observed in the conidia and conidia germinated at the ends. Cleistothecia were not observed. On the basis of mycelial, conidial, and hausthoria characteristics observed on six leaves for each affected cultivar, the fungus was identified as Erysiphe polygoni DC (1). Pathogenicity was confirmed on 5-week-old canola plants of cvs. Eclipse, Impulse, Master, Mistral, and Maskot by gently pressing (1 min) one adaxial infected leaf with abundant sporulation onto one adaxial healthy leaf. The experiment, which included five inoculated plants and three noninoculated control plants for each cultivar, was conducted in a greenhouse at 22 to 24°C and maintained at 75% relative humidity with no supplemental light. Inoculated and control plants were covered with polyethylene bags for 48 h after inoculation. Powdery mildew developed on all inoculated plants of all cultivars after 12 to14 days. The control plants did not develop disease. The experiment was repeated with similar results. E. polygoni has a worldwide distribution (2); however, the results suggest that this fungus may be a threat to the main cultivars being grown in Argentina (Eclipse, Impulse, Master, Mistral, and Nolza), since high levels of disease incidence, as much as 70%, were observed. Under propitious environments, this pathogen could cause severe yield losses in commercially grown canola in Argentina. To our knowledge, this is the first report of canola powdery mildew caused by E. polygoni in Argentina. References: (1) H. J. Boesewinkel. Rev. Mycol. Tome 41:493, 1977. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St.Paul, MN, 1989.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1013-1013 ◽  
Author(s):  
I. Y. Choi ◽  
B. S. Kim ◽  
S. E. Cho ◽  
J. H. Park ◽  
H. D. Shin

Gypsophila paniculata L. (baby's breath, family Caryophyllaceae), native to Central and Eastern Europe, is commonly cultivated as a commercial cut flower crop in greenhouses in Korea. Since 2011, baby's breath cv. Cassiopeia has been observed affected by a powdery mildew with nearly 100% disease incidence at the stage of harvesting in Iksan City. Powdery mildew colonies first appeared as thin white patches on stems and both sides of the leaves. As disease progressed, plants were covered with dense masses of spores, followed by senescence and reduction of quality of cut flowers. A voucher specimen was deposited in the Korea University Herbarium (Accession KUS-F27313). Appressoria were well-developed, multilobed or moderately lobed, and single or opposite in pairs. Conidiophores were straight, 95 to 150 × 7 to 10 μm, and composed of 3 to 4 cells. Foot-cells were cylindric or slightly sinuous at the base and 37 to 53 μm long. Singly produced conidia were cylindrical to oblong-elliptical, 35 to 56 × 12.5 to 18 μm with a length/width ratio of 2.1 to 3.6, devoid of fibrosin bodies, and with angular/rectangular wrinkling of outer walls. Germ tubes were in the perihilar position on conidia, and ended with lobed appressoria. No chasmothecia were found. These structures are typical of the Pseudoidium anamorph of the genus Erysiphe. Specific measurements and host range were consistent with those of E. buhrii U. Braun (2). To confirm identification, the complete internal transcribed spacer (ITS) region of rDNA of isolate KUS-F27313 was amplified with primers ITS1/ITS4, and sequenced directly. The resulting 725-bp sequence was deposited in GenBank (KJ530705). A GenBank BLAST search of the Korean isolate showed 99% similarity with E. buhrii on Acanthophyllum sp. (Caryophyllaceae) from Iran (AB128924). Pathogenicity was confirmed through inoculation by gently dusting conidia onto leaves of five healthy, potted baby's breath cv. Cassiopeia. Five non-inoculated plants served as controls. Inoculated plants were isolated from non-inoculated plants in separate rooms in a greenhouse at 25 ± 2°C. Inoculated plants developed signs and symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. Pathogenicity test was repeated twice. The powdery mildew disease caused by E. buhrii on baby's breath has been recorded in the former Soviet Union (Armenia, Kazakhstan, Ukraine), Romania, Turkey, Iran, Mongolia, and Argentina (1,3). Also, a fungus occurring on baby's breath was recorded as Oidium sp. from Japan (4). To our knowledge, this is the first report of powdery mildew caused by E. buhrii on baby's breath in Korea. Powdery mildew infections pose a serious threat to production of this cut flower crop. References: (1) K. Amano. Host Range and Geographical Distribution of the Powdery Mildew Fungi. Japan Scientific Societies Press, Tokyo, 1986. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved February 18, 2014. (4) M. Satou et al. Ann. Phytopathol. Soc. Jpn. 62:541, 1996.


Plant Disease ◽  
2021 ◽  
Author(s):  
Irum Mukhtar ◽  
Ruanni Chen ◽  
Yunying Cheng ◽  
Jianming Chen

Astragalus sinicus L., (Chinese milk vetch) is a traditional leguminous green manure that plays a significant role in maintaining paddy soil fertility to enhance yield and the quality of rice in China. It is also found in gardens, roadsides, farms, fields, riverbanks, open wastelands, and is often used as livestock feed. From February 2019 to 2021, severe powdery mildew infections were observed on hundreds of A. sinicus grown in gardens and at roadsides of Fuzhou city, China. The disease incidence was up to 100% on leaves and stems of A. sinicus. White superficial fungal colonies (circular to irregular patches) were present on both sides of the leaves. Hyphae were flexuous to straight, branched, 4 to 8 µm in width, and septate. Hyphal appressoria were lobulate and solitary or in opposite pairs. Conidiophores were erect and straight, hyaline, and 60 to 120 × 8 to 10 µm (n=30). Foot cell was cylindrical, straight to slightly curved, 22 to 38 × 8 to 10 µm, followed by two to three shorter cells. Conidia were cylindrical-oval to doliiform, 30 to 48 × 13.5 to 24 μm with a length/width ratio of 1.6 to 2.4 (n = 30), formed singly, and without fibrosin bodies. Conidial germ tubes were produced subterminal position. No chasmothecia were found in the collected samples. The morphological characteristics of asexual structures were consistent with the descriptions of E. trifoliorum (Wallr.) U. Braun in Braun and Cook (2012). To verify the identification of the pathogen, the ITS and the part of large subunit (LSU) rDNA gene of the isolates were amplified using ITS1/ITS4 and LSU1/ LSU2 primers (Scholin et al. 1994 and White et al. 1990, respectively) and sequences were deposited in GenBank (ITS: MZ021332, MZ021333; LSU: MZ021334, MZ021335). In BLASTn searches, the ITS and LSU sequences were 99 to 100% identical with those of E. trifoliorum parasitic on Lathyrus magellanicus (LC010015), Medicago littoralis (LC270860), Melilotus officinalis (LC009924) and Trifolium spp., (MN216308, KY660821), as well as E. baeumleri (Bradshaw et al. 2021) on Vicia nigricans (LC010014). Pathogenicity test was performed by gently pressing a diseased leaf onto 10 young leaves of three healthy potted plants, while three non-inoculated plants were used as controls. All plants were maintained in a greenhouse at 20 to 25°C, without humidity control, and natural light. Symptoms developed 7 days after inoculation, whereas the control leaves remained symptomless. The morphology of the fungus on the inoculated leaves was identical to that observed on the originally diseased leaves. Powdery mildew on A. sinicus has been reported as E. pisi and E. polygoni from Korea and China (Shin, 2000; Tai 1979), respectively. Amano (1986) listed E. pisi and Microsphaera astragali (now E. astragali) on A. sinicus from China and Japan. To our knowledge, this is the first report of powdery mildew caused by E. trifoliorum on A. sinicus in China and in general. E. astragali is the most common and widespread powdery mildew species on Astragalus spp. (Braun and Cook 2012) and would be expected on A. sinicus, but this species is genetically clearly different from E. trifoliorum (Bradshaw et al. 2021). The E. trifoliorum complex (clade) is composed of several morphologically well-distinguishable species, besides E. trifoliorum also including E. baeumleri (on Vicia spp.), E. hyperici (on Hypericum spp.), and E. euonymi (on Euonymus spp.), but based on a combination of sequence plus host identity, the collection on A. sinicus can be assigned to E. trifoliorum (Bradshaw et al. 2021). The information in this study extended the host range of E. trifoliorum as well as future studies on A. sinicus in relation to powdery mildew outbreaks in China. References: Amano (Hirata), K. 1986. Host Range and Geographical Distribution of the Powdery Mildew Fungi. Japan Scientific Societies Press, Tokyo, 741 pp. Bradshaw, M., et al. 2021. Mycologia. (In press) Braun, U., Cook, R. T. A. 2012. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, the Netherlands. Scholin, C. A., et al. 1994. J. Phycol. 30:999. Shin, H.D. 2000. Erysiphaceae of Korea. National Institute of Agricultural Science and Technology, Suwon, Korea, 320 pp. Tai, F.L. 1979. Sylloge Fungorum Sinicorum. Sci. Press, Acad. Sin., Peking, 1527 pp. White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 161-161 ◽  
Author(s):  
I. Y. Choi ◽  
S. H. Hong ◽  
S. E. Cho ◽  
J. H. Park ◽  
H. D. Shin

Peucedanum japonicum Thunb., belonging to the family Apiaceae, is distributed in many Asian countries, including Korea. This plant was recently developed as an edible green and is cultivated under organic farming in Korea. In June 2013, plants showing typical symptoms of powdery mildew were found with approximately 50% disease incidence in polyethylene-film-covered greenhouses in Iksan City, Korea. Symptoms first appeared as circular white colonies, which subsequently showed abundant mycelial growth on the leaves, often covering the whole surface. Infected plants were unmarketable mainly due to signs of white fungal growths and reddish discoloration on the leaves. The same symptoms were found on P. japonicum in poly-tunnels in Iksan City and Jinan County of Korea in 2014. Voucher specimens (n = 3) were deposited in the Korea University Herbarium (KUS). Appressoria were lobed, and solitary or in opposite pairs. Conidiophores were cylindrical, 80 to 145 × 8 to 10 μm, and composed of three to four cells. Foot-cells of conidiophores were straight to substraight, cylindrical, and 25 to 63 μm long. Singly produced conidia were oblong-elliptical to oblong, occasionally ovate, 35 to 50 × 13 to 16 μm with a length/width ratio of 2.3:3.1, with angular/rectangular wrinkling of outer walls, and lacked distinct fibrosin bodies. Germ tubes were produced on the perihilar position of conidia. Primary conidia were apically conical, basally truncate, and generally smaller than the secondary conidia. No chasmothecia were found. These structures are typical of the powdery mildew Pseudoidium anamorph of the genus Erysiphe. The specific measurements and morphological characteristics were consistent with those of E. heraclei DC. (2). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA from KUS-F27872 was amplified with primers ITS1/ITS4 and sequenced. The resulting 560-bp sequence was deposited in GenBank (Accession No. KM491178). The obtained ITS sequence shared >99% similarity with those of E. heraclei from apiaceous hosts, e.g., Daucus carota (KC480605), Pimpinella affinis (AB104513), and Petroselinum crispum (KF931139). Pathogenicity was confirmed through inoculation by gently dusting conidia onto leaves of five healthy potted plants. Five non-inoculated plants served as controls. Inoculated plants developed symptoms after 6 days, whereas the control plants remained symptomless. The fungus present on the inoculated plants was identical in morphology to those observed in the field. Powdery mildew of P. japonicum caused by E. heraclei has been reported in Japan (4), and numerous reports of E. heraclei on various species of Peucedanum plants have been made in most part of Europe and East Asia (Japan and far eastern Russia) (1,3). However, this is the first report of powdery mildew caused by E. heraclei on P. japonicum in Korea. Occurrence of powdery mildews is a threat to the quality and marketability of this plant, especially in organic farming. References: (1) K. Amano. Host Range and Geographical Distribution of the Powdery Mildew Fungi. Japan Scientific Societies Press, Tokyo, 1986. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (3) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., online publication. ARS, USDA. Retrieved August 18, 2014. (4) S. Tanda and C. Nakashima. J. Agric. Sci., Tokyo Univ. Agric. 47:54, 2002.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 856-856 ◽  
Author(s):  
S. E. Cho ◽  
S. K. Lee ◽  
S. H. Lee ◽  
C. K. Lee ◽  
H. D. Shin

Catalpa bignonioides Walter, known as southern catalpa or Indian bean tree, is native to the southeastern United States and are planted as shade trees throughout the world. In August 2009, typical powdery mildew symptoms on several leaves of the plants below 5% disease incidence were observed in a public garden of Hongcheon County of Korea. In 2011 to 2013, hundreds of southern catalpa trees were found heavily damaged by a powdery mildew with 90 to 100% disease incidence in a park of Incheon City of Korea, about 140 km apart from Hongcheon County. Symptoms appeared as circular to irregular white patches, which subsequently showed abundant mycelial growth on both sides of leaves and herbaceous stems. Severe infections caused poor growth and premature loss of leaves, resulting in reduced aesthetic value. Voucher specimens (n = 6) were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were well-developed, lobed, and solitary or in opposite pairs. Conidiophores composed of 3 to 4 cells were 70 to 100 × 7.5 to 10 μm, and produced conidia singly. Foot-cells of conidiophores were flexuous or nearly straight, and 20 to 40 μm long. Conidia were oblong to oblong-elliptical, measured 30 to 42 × 13 to 20 μm (n = 30) with a length/width ratio of 1.6 to 2.5, devoid of distinct fibrosin bodies, and showed angular/rectangular wrinkling of outer walls. Primary conidia were apically rounded, basally subtruncate, and generally smaller than the secondary conidia. Germ tubes were produced on the end of conidia. Chasmothecia were not observed. These structures are typical of the Pseudoidium anamorph of the genus Erysiphe. The specific measurements and characteristics were compatible with those of E. elevata (Burrill) U. Braun & S. Takam. (1,2). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA from KUS-F27676 was amplified with primers ITS5 and P3 (4) and sequenced directly. The resulting 675-bp sequence was deposited in GenBank (Accession No. KF840721). A GenBank BLAST search of the ITS sequence showed >99% similarity with isolates of E. elevata on C. bignonioides (Accession Nos. AY587012 to AY587014). Pathogenicity was confirmed through inoculation by gently dusting conidia onto leaves of five healthy southern catalpa seedlings. Five non-inoculated plants served as controls. Inoculated and non-inoculated plants were maintained in a greenhouse at 24 to 28°C in isolation. Inoculated plants developed symptoms after 6 days, whereas the control plants remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. E.elevata is a North American powdery mildew on Catalpa species which was recently introduced into Europe (1,2,3). To our knowledge, this is the first report of powdery mildew caused by E. elevata on C. bignonioides in Asia as well as in Korea. The disease would be a serious threat to the widespread ornamental plantings of C. bignonioides in Korea. References: (1) N. Ale-Agha et al. Mycol. Prog. 3:291, 2004. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (3) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., Online publication. ARS, USDA. Retrieved November 4, 2013. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1383-1383 ◽  
Author(s):  
J. Y. Kim ◽  
B. S. Kim ◽  
S. E. Cho ◽  
H. D. Shin

Indian mustard (Brassica juncea (L.) Czern.) belongs in the Brassicaceae and is widely cultivated in Korea for the edible leaves. In May 2011, Indian mustard plants of cv. Cheong-Kyeoja, growing in polyethylene-film-covered greenhouses in Hwaseong, Korea, were observed to be affected by a powdery mildew. Symptoms appeared as circular to irregular white colonies, which subsequently showed abundant hyphal growth on both leaf surfaces. Severely infected plants were unmarketable due to leaf discoloration, and most were not harvested. Voucher specimens have been deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were well developed, lobed, solitary, or in opposite pairs. Conidiophores were cylindrical, 70 to 115 × 8 to 10 μm, and composed of 3 to 4 cells. Foot-cells of conidiophores were straight to substraight, cylindrical, and relatively short (20 to 30 μm long). Singly-produced conidia were oblong to cylindrical or oval, 27.5 to 50 × 14 to 17.5 μm with a length/width ratio of 1.8 to 3.6, with angular/rectangular wrinkling of outer walls, and lacked distinct fibrosin bodies. Germ tubes were produced in the perihilar position of conidia. No chasmothecia were found. These structures are typical of the powdery mildew Pseudoidium anamorph of the genus Erysiphe. The specific measurements and characteristics were consistent with previous records of Erysiphe cruciferarum Opiz ex L. Junell (1). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA of KUS-F24819 was amplified with primers ITS5 and P3 (4), and sequenced directly. The resulting 462-bp sequence was deposited in GenBank (Accession No. KC862331). A GenBank BLAST search of the ITS sequence showed 100% identity (462/462 bp) with those of isolates of E. cruciferarum from B. oleracea var. acephala, B. rapa, and Arabidopsis thaliana (GU721075, EU140958, and FJ548627, respectively). Pathogenicity was confirmed through inoculation by gently dusting conidia onto leaves of five healthy, potted Indian mustard plants of the cv. Cheong-Kyeoja. Five non-inoculated plants served as a control treatment. Inoculated plants were isolated from non-inoculated plants in separate rooms in a greenhouse at 18 to 24°C. Inoculated plants developed symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on the diseased plants, fulfilling Koch's postulates. There are records of E. cruciferarum infecting B. juncea in Europe (Finland, Romania, Sweden, Switzerland), the former Soviet Union, Australia, South Africa, and Asia (India, Japan, and China) (2,3). To our knowledge, this is the first report of powdery mildew caused by E. cruciferarum on B. juncea in Korea. Occurrence of powdery mildew is a threat to quality and marketability of this crop, especially those grown in organic farming where chemical control options are limited. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., Online publication. USDA ARS. Retrieved 20 March 2013. (3) P. Kaur et al. Plant Dis. 92:650, 2008. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 421-421 ◽  
Author(s):  
H. H. Zhao ◽  
H. H. Xing ◽  
C. Liang ◽  
X. Y. Yang ◽  
S. E. Cho ◽  
...  

Chinese cabbage, Brassica rapa ssp. pekinensis (syn. Brassica pekinensis (Lour.) Rupr.), in the Brassicaceae, is an important vegetable grown on about 3 million ha in China. Since 2012, a powdery mildew has been found infecting Chinese cabbage plants (cv. Qingyanchunbai No. 1) after bolting for seed production from autumn through spring 2013 in a greenhouse in Qingdao, China. Symptoms first appeared as circular to irregular white patches on both sides of the leaves, and on stems and pods, often thinly covering the whole surface. A voucher specimen was deposited in the herbarium of Qingdao Agricultural University (Accession No. HMQAU12216). Hyphae were thin-walled, smooth, hyaline, and 4 to 6 μm wide. Appressoria on the mycelia were well developed, lobed, solitary, or in pairs. Conidiophores were erect, cylindrical, 45 to 110 μm long, and comprised 3 to 4 cells. Foot-cells of conidiophores were straight, cylindrical, 16 to 28 μm long, and 7.6 to 10 μm wide. Singly-produced conidia were oblong to cylindrical or somewhat ellipsoid-doliiform, 32 to 56 × 12 to 18 μm, with a length/width ratio of 1.8 to 3.8, with angular/rectangular wrinkling of the outer wall surface, and lacked distinct fibrosin bodies. Germ tubes were produced in the perihilar position of conidia. No chasmothecia were found. These structures are typical of the powdery mildew Pseudoidium anamorph of Erysiphe (2). The specific measurements and characteristics (especially short foot-cells of conidiophores) were consistent with previous records of Erysiphe cruciferarum Opiz ex L. Junell (2,3). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA of isolate HMQAU12216 was amplified (4) and sequenced directly. The resulting 649-bp sequence was deposited in GenBank (Accession No. KC878683). A GenBank BLAST search of ITS sequences showed an exact match with those of E. cruciferarum on B. oleracea var. acephala (GU721075) and Oidium sp. on B. pekinensis (AB522714). A pathogenicity test was conducted by gently pressing a symptomatic leaf loaded with conidia onto a leaf of each five, healthy, potted, 40-day-old plants (cv. Qingyanchunbai No. 1). Five non-inoculated plants served as a control treatment. Inoculated plants were isolated from non-inoculated plants in separate rooms in a greenhouse at 20 ± 2°C. Inoculated plants developed signs and symptoms after 10 days, whereas the control plants remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants, thus fulfilling Koch's postulates. Though many Brassica spp. have been known to be infected with E. cruciferarum throughout the world, powdery mildew of Chinese cabbage caused by E. cruciferarum has been reported only in Finland, Germany, and Korea (1,3). To our knowledge, this is the first report of powdery mildew caused by E. cruciferarum on Chinese cabbage in China. Though occurrence of the powdery mildew on Chinese cabbage was noticed in an experimental breeding plot, this finding poses a potential threat to production of this vegetable in China. References: (1) U. Braun. The Powdery Mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena, Germany, 1995. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (3) H. J. Jee et al. Plant Pathol. 57:777, 2008. (4) S. Matsuda and S. Takamatsu. Mol. Phylogen. Evol. 27:314, 2003.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1278-1278 ◽  
Author(s):  
S. E. Cho ◽  
J. H. Park ◽  
S. H. Hong ◽  
I. Y. Choi ◽  
H. D. Shin

Agastache rugosa (Fisch. & C.A. Mey.) Kuntze, known as Korean mint, is an aromatic plant in the Lamiaceae. It is widely distributed in East Asian countries and is used as a Chinese traditional medicine. In Korea, fresh leaves are commonly added to fish soups and stews (3). In November 2008, several dozen Korean mints plants growing outdoors in Gimhae City, Korea, were found to be severely infected with a powdery mildew. The same symptoms had been observed in Korean mint plots in Busan and Miryang cities from 2008 to 2013. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on stems and both sides of the leaves. Severe disease pressure caused withering and senescence of the leaves. Voucher specimens (n = 5) were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were 105 to 188 × 10 to 13 μm and produced 2 to 4 immature conidia in chains with a sinuate outline, followed by 2 to 3 cells. Foot-cells of the conidiophores were straight, cylindrical, slightly constricted at the base, and 37 to 58 μm long. Conidia were hyaline, ellipsoid to barrel-shaped, measured 25 to 40 × 15 to 23 μm (length/width ratio = 1.4 to 2.1), lacked distinct fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were obconically rounded at the apex and subtruncate at the base. Germ tubes were produced at the perihilar position of conidia. No chasmothecia were observed. The structures described above were typical of the Oidium subgenus Reticuloidium anamorph of the genus Golovinomyces. The measurements and morphological characteristics were compatible with those of G. biocellatus (Ehrenb.) V.P. Heluta (1). To confirm the identification, molecular analysis of the sequence of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) of isolate KUS-F27200 was conducted. The complete ITS rDNA sequence was amplified using primers ITS5 and P3 (4). The resulting 514-bp sequence was deposited in GenBank (Accession No. KJ585415). A GenBank BLAST search of the Korean isolate sequence showed >99% similarity with the ITS sequence of many G. biocellatus isolates on plants in the Lamiaceae (e.g., Accession Nos. AB307669, AB769437, and JQ340358). Pathogenicity was confirmed by gently pressing diseased leaf onto leaves of five healthy, potted Korean mint plants. Five non-inoculated plants served as a control treatment. Inoculated plants developed symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on inoculated plants was identical morphologically to that observed on the original diseased plants. The pathogenicity test was repeated with identical results. A powdery mildew on A. rugosa caused by G. biocellatus was reported from Romania (2). To our knowledge, this is the first report of powdery mildew caused by G. biocellatus on A. rugosa in Korea. The plant is mostly grown using organic farming methods with limited chemical control options. Therefore, alternative control measures should be considered. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., online publication, USDA ARS, retrieved 17 February 2014. (3) T. H. Kim et al. J. Sci. Food Agric. 81:569, 2001. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2021 ◽  
Author(s):  
José Francisco Díaz-Nájera ◽  
Sergio Ayvar-Serna ◽  
Antonio Mena-Bahena ◽  
Guadalupe Arlene Mora-Romero ◽  
Karla Yeriana Leyva-Madrigal ◽  
...  

Cucurbita argyrosperma, commonly named as winter or cushaw squash, is highly sought for its seeds, which have important uses in culinary arts. During the autumn 2021, powdery mildew-like signs and symptoms were observed on cushaw squash in several commercial fields located in Cocula, Guerrero, Mexico. Signs were initially appeared as whitish powdery patches on both sides of leaves and then covering entire leaves and causing premature senescence. The disease incidence was estimated to be 80% in about 1000 plants in two fields. The mycelium was amphigenous, persistent, white in color, and occurred in dense patches. A voucher specimen was deposited in the Herbarium of the Colegio Superior Agropecuario del Estado de Guerrero under the accession number CSAEG22. For the morphological characterization by light microscopy, fungal structures were mounted in a drop of lactic acid on a glass slide. Microscopic examination showed nipple-shaped hyphal appressoria. Conidiophores (n = 30) were straight, 100 to 190 × 10 to 12 μm and produced 2 to 6 conidia in chains. Foot-cells were cylindrical, 41 to 78 μm long, followed by 1 to 2 shorter cells. Conidia (n = 100) were ellipsoid-ovoid to barrel-shaped, 29.5 to 39.1 × 19.4 to 22.7 μm, and contained conspicuous fibrosin bodies. Germ tubes were produced from a lateral position on conidia. Chasmothecia were not observed during the growing season. The morphological characters were consistent with those of the anamorphic state of Podosphaera xanthii (Braun and Cook 2012). For further confirmation, total DNA was extracted from conidia and mycelia following the CTAB method (Doyle and Doyle 1990), and the internal transcribed spacer (ITS) region and part of the 28S gene were amplified by PCR, and sequenced. The ITS region of rDNA was amplified using the primers ITS5/ITS4 (White et al. 1990). For amplification of the 28S rRNA partial gene, a nested PCR was performed using the primer sets PM3 (Takamatsu and Kano 2001)/TW14 (Mori et al. 2000) and NL1/TW14 (Mori et al. 2000) for the first and second reactions, respectively. Phylogenetic analyses using the Maximum Likelihood method, including ITS and 28S sequences of isolates of Podosphaera spp. were performed and confirmed the results obtained in the morphological analysis. The isolate CSAEG22 grouped in a clade with isolates of Podosphaera xanthii. The ITS and 28S sequences were deposited in GenBank under accession numbers OL423329 and OL423343, respectively. Pathogenicity was confirmed by gently dusting conidia from infected leaves onto ten leaves of healthy C. argyrosperma plants. Five non-inoculated leaves served as controls. The plants were maintained in a greenhouse at 25 to 35 ºC, and relative humidity of 60 to 70%. All inoculated leaves developed similar signs to the original observation after 10 days, whereas control leaves remained symptomless. Microscopic examination of the fungus on inoculated leaves showed that it was morphologically identical to that originally observed on diseased plants, fulfilling Koch’s postulates. Podosphaera xanthii has been previously reported on C. maxima, C. moschata, and C. pepo in Mexico (Yañez-Morales et al. 2009; Farr and Rossman 2021). To our knowledge, this is the first report of P. xanthii causing powdery mildew on C. argyrosperma in Mexico. This pathogen is a serious threat to C. argyrosperma production in Mexico and disease management strategies should be developed.


Sign in / Sign up

Export Citation Format

Share Document