scholarly journals First Report of Colletotrichum acutatum on Strawberry in Northwestern Argentina

Plant Disease ◽  
2000 ◽  
Vol 84 (6) ◽  
pp. 706-706 ◽  
Author(s):  
C. J. Ramallo ◽  
L. D. Ploper ◽  
M. Ontivero ◽  
M. P. Filippone ◽  
A. Castagnaro ◽  
...  

Isolates were obtained from strawberry tissue with anthracnose symptoms from several locations near Tucumán, Argentina. Isolates were characterized using several criteria. Isolates produced fusiform conidia, tapered to a point at both ends, and averaged 13.5 × 4.9 μm. On potato dextrose agar, colonies produced a white cottony mycelial colony that turned orange in older cultures. Compared with Colletotrichum fragariae, the new isolates produced fewer appressoria. Pathogenicity tests were conducted on detached leaves and plants in the greenhouse and field. Detached immature leaves of cvs. Chandler, Fern, and Sweet Charlie were inoculated with a 20-μl droplet of an aqueous conidial suspension (106 conidia per ml) placed on the adaxial surface. Control leaves were inoculated with sterile distilled water. Leaves were maintained under white light (2,000 lux, 12 h/day) at 26°C, and 100% relative humidity. Necrotic spots were visible 4 days after inoculation. Greenhouse and field plants were spray-inoculated and covered for 48 h. Disease symptoms were mainly observed on petioles and runners 9 days after inoculation. No lesions were observed on control detached leaves or plants. Koch's postulates were confirmed in all cases. Based on morphological and cultural characteristics, isolates were identified as C. acutatum Simmonds (1). This is the first report of C. acutatum causing strawberry anthracnose in northwestern Argentina. Reference: (1) B. Smith and L. L. Black. Plant Dis. 74:69, 1990.

Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 595-595 ◽  
Author(s):  
M. E. Mónaco ◽  
S. M. Salazar ◽  
A. Aprea ◽  
J. C. Díaz Ricci ◽  
J. C. Zembo ◽  
...  

Colletotrichum gloeosporioides was isolated from symptomatic strawberry (Fragaria × ananassa Duch. ‘Chandler’) growing in Lules (Tucumán, Argentina). Isolates were characterized based on several criteria. Potato dextrose agar (PDA) was used to evaluate cultural and morphological characteristics of the isolates. After 10 days on PDA at 28°C under continuous white light, colonies showed abundant aerial, cottony white to pale beige growth, with orange asexual fruiting bodies in older colonies. Isolates displayed cylindrical conidia, rounded at both ends, averaging 10.4 × 3.9 µm (length by width). A sexual phase (perithecia) was observed in all isolates in 2-month-old cultures on PDA at 28°C under continuous white light. Pathogenicity tests were conducted with healthy plants of cvs. Pájaro and Chandler. Spray inoculation with conidial suspensions (106 conidia per ml) resulted in disease symptoms (petiole and crown lesions with wilting of crown-infected plants) 7 days after inoculation. Infection progressed at a higher rate in Pájaro than in Chandler. Reisolations from infected strawberry lesions yielded isolates with characteristics identical to the isolate used to inoculate the host. Based on morphological and cultural characteristics, isolates were identified as C. gloeosporioides Penz. & Sacc. (teleomorph Glomerella cingulata Spauld & H. Schenk) (1). This is the first report of C. gloeosporioides causing strawberry anthracnose in northwestern Argentina. Reference: (1) P. S. Gunnell and W. D. Gubler. Mycol. 84:157, 1992.


Plant Disease ◽  
2020 ◽  
Author(s):  
Min Li ◽  
Zhaoyin Gao ◽  
Xiaoyu Hong ◽  
Zhang Shao Gang ◽  
Chao Zhao ◽  
...  

Erythrina crista-galli L. (Fabaceae) is a popular ornamental plant in tropical and subtropical regions of South Asia. In October 2019, anthracnose-like lesions were observed on the leaves of E. crista-galli planted in Haikou, China. 5-30% of leaves were infected. At first, the circular spots of 1-2 mm in diameter were reddish-brown on the leaves, and then enlarged to circular, subcircular or irregular spots with reddish-brown center and surrounded by a diffuse yellow margin. Neighboring spots sometimes coalesced. Under continuously wet or humid conditions, the lesions expanded quickly, and became gray, subcircular or irregular spots covered by grayish-white mycelium and orange-pink conidial masses. Diseased leaves eventually fell off the trees. To identify the pathogen, diseased leaves were sampled from four gardens. Leaf tissues (5×5 mm) were cut from the margins of typical symptomatic lesions, surface-sterilized in 1% sodium hypochlorite for 1 min, plated on potato dextrose agar (PDA) medium, and incubated at 28.0±0.5℃ in the dark. Similar fungal colonies were obtained from all plated tissues after 3 days. The single-conidium colonies of all isolates were white to pale gray and cottony with visible orange conidial masses. Conidia were one-celled, aseptate, hyaline, straight, cylindrical to fusiform with obtuse ends, and ranged from 14.2-18.6 µm (16.4 µm)× 3.8-5.4 µm (4.7 µm) (n=100). After germination, conidia formed single, brown, oval or slightly irregular appressoria ranging from 8.0 to 11.8 μm (9.6 µm), and from 4.8 to 6.0 μm (5.4 µm). Sexual stage was absent. These characteristics of conidia and appressoria were matched with C. siamense belonging to the C. gloeosporioides complex (Prihastuti et al. 2009; Yang et al. 2009; Weir et al. 20012; Hu et al. 2015). To accurately identify the species, DNA was extracted from four purified isolates (JG-1, JG-3-1, SWS-1-3, SWS-2-1) (Fu et al. 2019). The internal transcribed spacer of rDNA region (ITS), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), calmodulin (CAL), actin (ACT) and chitin synthase (CHS) genes were amplified and sequenced. The nucleotide sequences were all deposited in GenBank (ITS: MT229427-MT229430, GAPDH: MT250821-MT250824, CAL: MT258893-MT258896, ACT: MT258897-MT258900 and CHS: MT258901-MT258904). Multi-locus phylogenetic analyses (ITS, GAPDH, CAL, ACT and CHS) (Weir et al. 2012) showed that the four isolates were clustered with C. siamense, which was in accordance with BLAST results. Pathogenicity tests of the four isolates were repeated three times on detached leaves (Ji et al. 2019). The conidial suspension (1×106 conidia/mL) was prepared using the conidia from 10-day-old cultures grown on PDA. Two 20-µL drops of conidial suspension were inoculated on non-wounded young healthy leaves, and each isolate was inoculated on 10 leaves. Two 20-µL drops of sterile water were inoculated on non-wounded young healthy leaves as control. The samples were maintained in containers at a relative humidity of 90± 5 per cent inside and 28℃ with a 12-h photoperiod. Gray, subcircular spots similar to the field disease symptoms were observed on the all inoculated leaves after 7 days, whereas no visible symptoms appeared on the non-inoculated leaves. The pathogen was re-isolated from inoculated leaves thus fulfilling Koch’s postulates. C. gloeosporioides has been previously reported as a pathogen causing leaf spot on Erythrina (E. indica var. picta, E. variegata var. orientalis) in Guam in 1983 and Brazil in 2012. (Russo et al. 1983; Oliveira et al. 2012). To our knowledge, this is the first report of C. siamense causing leaf spot of E. crista-galli in China.


Plant Disease ◽  
2010 ◽  
Vol 94 (11) ◽  
pp. 1378-1378 ◽  
Author(s):  
U. P. Lopes ◽  
L. Zambolim ◽  
H. S. S. Duarte ◽  
P. G. C. Cabral ◽  
O. L. Pereira ◽  
...  

There are more than 300 blackberry (Rubus) species worldwide. Rubus brasiliensis Mart. is a native Brazilian species found in tropical forests. In January 2009, samples of R. brasiliensis with severe leaf blight were collected from an area of rain forest in the city of São Miguel do Anta, State of Minas Gerais, Brazil. Dark spots began developing in the young leaves and progressed to necrotic spots with occasional twig dieback. From the spots, a fungus was isolated with the following morphology: acervuli that were 20 to 50.0 × 50 to 125.0 μm and hyaline amerospores that were ellipsoid and fusiform and 7.5 to 23.75 × 2.5 to 5.0 μm. On the basis of these morphological characteristics, the fungus was identified as Colletotrichum acutatum. In Brazil, C. acutatum is reported in apple, citrus, strawberry, peach, plum, nectarine, olive, medlar, and yerba-mate, but it was not reported as the causal agent of leaf blight in R. brasiliensis. A sample was deposited in the herbarium at the Universidade Federal de Viçosa, Minas Gerais, Brazil (VIC 31210). One representative isolate, OLP 571, was used for pathogenicity testing and molecular studies. Identity was confirmed by amplifying the internal transcribed spacer (ITS) regions of the ribosomal RNA with primers ITS4 (3), CaInt2 (a specific primer for C. acutatum [2]) and CgInt (a specific primer for C. gloeosporioides [1]). Isolates of C. acutatum (DAR78874 and DAR78876) and C. gloeosporioides (DAR78875) obtained from Australian olive trees were used as positive controls. The primers ITS4 and CaInt2 amplified a single DNA product of 500 bp expected for C. acutatum. OLP 571 was grown for 7 days on potato dextrose agar. Young leaves of R. brasiliensis were inoculated with a conidial suspension (106 conidia/ml) on young leaves. Inoculated plants were maintained in a moist chamber for 2 days and subsequently in a greenhouse at 25°C. Necrotic spots similar to those described were detected on young leaves 3 days after the inoculation. Control leaves, on which only water was sprayed, remained healthy. The same fungus was reisolated from the inoculated symptomatic tissues. To our knowledge, this is the first report of C. acutatum causing leaf blight in the native species of R. brasiliensis in Brazil. References: (1) P. R. Mills et al. FEMS Microbiol. Lett. 98:137, 1999. (2) S. Sreenivasaprasad et al. Plant Pathol. 45:650, 1996. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Plant Disease ◽  
2000 ◽  
Vol 84 (3) ◽  
pp. 371-371 ◽  
Author(s):  
P. C. Tsahouridou ◽  
C. C. Thanassoulopoulos

During a survey of diseases on kiwifruit (Actinidia chinensis) cv. Hayward during spring 1998 in Northern Greece, leaves of kiwifruit trees were found covered with small, necrotic brown spots. Intense spotting was associated with defoliation. Furthermore, small, sunken, dark brown cankers appeared a few centimeters below the twig tip, and twigs died distal to the canker a few days later, while the twig remained healthy below the canker, often producing a new shoot below the canker. Isolations from symptomatic leaves and internal tissues of twigs on potato dextrose agar (PDA), after surface-sterilization with 0.5% NaOCl and 90% alcohol, respectively, consistently yielded a fungus that, based on conidial morphological characteristics, was identified as Alternaria alternata (Nees:Fr.) Keissl. (2). Pathogenicity tests were performed on 3-year-old kiwi plants. Tests on twigs were conducted by inoculating 35 twigs with 5-mm disks from 7-day-old cultures on PDA at 25°C. Each twig was inoculated with three disks. Tests on leaves were conducted by spraying a conidial suspension (5 × 106 conidia per ml) of the cultures on leaves. Plants were kept in a glasshouse at 22 to 25°C. Symptoms, identical to those observed in the field, developed on leaves and twigs 6 and 18 days, respectively, after inoculation. All inoculated leaves exhibited symptoms of the disease, whereas more than 95% of inoculated twigs exhibited disease symptoms. A. alternata was consistently reisolated from inoculated tissues. A. alternata is widely known to be a leaf spot pathogen of kiwifruit (1). This is the first report of A. alternata causing twig dieback. References: (1) L. Corazza and L. Luongo. Plant Dis. 83:487, 1999. (2) E. G. Simmons. Mycotaxon 37:79, 1990.


Plant Disease ◽  
2002 ◽  
Vol 86 (8) ◽  
pp. 922-922 ◽  
Author(s):  
W. W. Turechek ◽  
C. Heidenreich ◽  
M. P. Pritts

Strawberry plants with red to black, sunken, fusoid lesions on runners and leaf petioles were found in several first-year plantings in grower's fields in western New York in 2000. Affected cultivars included Honeoye, Jewel, and Primetime. Sections of petiole were excised from lesion margins and plated on potato dextrose agar (PDA) amended with chloramphenicol, streptomycin sulfate, and tetracycline hydrochloride at 100 μg/ml. The fungus, Colletotrichum acutatum (J.H. Simmonds), was consistently isolated and identified based on conidia morphology and its growth rate in culture relative to reference cultures of C. acutatum, C. gloeosporoides, and C. fragariae (1,2). The average size of conidia produced on PDA was 15.2 × 5 μm. For each of six isolates, three plants each of six-week-old Honeoye and Kent were spray inoculated with a conidial suspension (106 conidia per ml), and petioles, leaves, and crowns were stabbed with a sterile pin following inoculation. After 14 days at 20 to 25°C, petioles and leaves on all inoculated plants developed lesions consistent with those seen in the field. The fungus was readily reisolated from leaf and petiole lesions. Subsequent inoculations on detached fruit under the same conditions yielded circular, sunken, dry lesions that produced a salmon-colored, slimy, spore mass typical of C. acutatum. This is the second report of strawberry anthracnose in the northeastern United States (3) and to our knowledge, the first report in New York. References: (1) J. A. García Muñoz et al. Mycologia 92:288, 2000. (2) P. S. Gunnel and W. D. Gubler. Mycologia 84:157, 1992. (3) J. A. LaMondia. Plant Dis. 75:1286, 1991.


Plant Disease ◽  
2003 ◽  
Vol 87 (12) ◽  
pp. 1536-1536 ◽  
Author(s):  
G. Polizzi ◽  
I. Castello ◽  
A. M. Picco ◽  
D. Rodino

St. Augustinegrass (Stenotaphrum secundatum (Walt.) Kuntze) is used for lawns in southern Italy because it is much more resistant to biotic and abiotic adversities than other turfgrass species. Because few seeds are viable, this species is established by vegetative propagation. A new disease was noticed during the spring of 2002 and 2003 on cuttings of St. Augustinegrass growing in three greenhouses in eastern Sicily. The disease affected leaves and culms and caused a progressive drying of the plants. The infection was first seen on leaves as gray, necrotic spots that enlarged in high-humidity conditions to form oval, and later, spindle-shaped lesions. In association with the lesions, it was possible to observe fungal spore development and sunken areas with blue-gray centers and slightly irregular, brown margins with yellow halos. Spots were concentrated without specific arrangement along longitudinal veins and the midrib and at the base, tip, and margins of the leaf blade. Symptoms on the culms consisted of brown-to-black blotches that sometimes extended throughout the internodes. From these infected tissues, 20 explants taken from leaves and culms were cut, washed with sterile water, and placed on 1.5% water agar (WA). Later, conidia and conidiophores were obtained from colonies with a sterile glass needle and placed on 4% WA. From these plates, two monoconidial isolates were obtained and transferred to rice meal medium (1). The colonies were identified as Pyricularia grisea Cooke (Sacc.), anamorphic state of Magnaporthe grisea (Hebert) Yeagashi & Udagawa, the cause of rice blast disease and gray leaf spot disease of turfgrasses. The conidia were pyriform to obclavate, narrowed toward the tip, rounded at the base, 2-septate, 21 to 31 μm × 6 to 10 μm (average 25.7 ×8.2 μm). Pathogenicity tests were performed by inoculating leaves and culms of six St. Augustinegrass plants with a conidial suspension of the fungus (1.5 ×105 conidia per ml). The same number of noninoculated plants was used as controls. All plants were incubated in a moist chamber with high humidity at 25°C. After 6 days, all inoculated plants showed typical symptoms of the disease. Koch's postulates were fulfilled by isolating P. grisea from inoculated plants. Gray leaf spot caused by P. grisea has been a chronic problem on St. Augustinegrass since it was first reported in 1957 (2). To our knowledge, this is the first report of P. grisea on St. Augustinegrass in Italy. While it does not appear to be an important disease in the field at this time in Sicily, it could cause losses in greenhouses where vegetative material is propagated for field planting. A preliminary molecular analysis has shown a clear distinction between the tested strain and other strains isolated from rice seeds and plants in northern Italy. References: (1) E. Roumen et al. Eur. J. Plant Pathol. 103:363, 1997. (2) L. P. Tredway et al. Plant Dis. 87:435, 2003.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1660-1660
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
A. Poli ◽  
M. L. Gullino

Verbascum nigrum L., common name black mullein, family Scrophulariaceae, is a rustic perennial plant belonging to the native flora in Italy. The plant, which produces bright yellow flowers densely grouped on the tall stem, is used in low-maintenance gardens. During fall 2012, plants grown in mixed planting borders in a garden located in Biella Province (northern Italy) showed extensive foliar disease. Approximately 100 plants were affected by the disease. Early symptoms were small, light brown, necrotic spots on leaves, later reaching 10 mm diameter, with an irregular shape, showing a chlorotic halo. Necrotic areas often coalesced surrounded by yellowing. In some cases, the internal part of the necrotic areas dried with the appearance of holes. The disease progressed from the base to the apex of plants. In some cases, most of leaves turned completely necrotic and plants were severely damaged. Symptomatic tissues were immersed in a solution containing 1% sodium hypochlorite for 2 to 3 s and rinsed with sterile distilled water. Small fragments were excised from the margin of lesions and plated on potato dextrose agar (PDA) medium. Petri dishes were incubated at temperatures ranging between 20 and 25°C under alternating daylight and darkness (12 h light, 12 h dark). A single fungus was consistently isolated and subcultured on malt extract agar (MEA). On MEA, colonies were felty, white cream, and produced dark globose or subglobose pycnidia measuring 68 to 185 × 62 to 177 (average 122 × 113) μm, containing hyaline (light grey in mass), ellipsoid, non-septate conidia measuring 3.1 to 5.7 × 1.5 to 2.7 (average 4.0 × 2.0) μm after 15 days. The internal transcribed spacer (ITS) and D1/D2 regions of rDNA were amplified using the primers ITS1/ITS4 and NL1/NL4, respectively, and then sequenced (GenBank Accession Nos. KC411473 and KF041823). BLAST analysis of both fragments showed 99% homology with the sequences GU237753 and JQ768403 of Phoma novae-verbascicola Aveskamp, Gruyter & Verkley (Basionym: Phyllosticta verbascicola Ellis & Kellerm.). Morphological characteristics of the fungus also were consistent with the descriptions of P. poolensis var. verbascicola (Ellis & Kellerm.) Aa & Boerema (2) (Syn.: P. novae-verbascicola). Pathogenicity tests were performed by spraying a conidial suspension (4 × 104 CFU/ml) obtained from 15-day-old PDA cultures of the fungus onto leaves of three healthy 3-month-old V. nigrum. Three plants inoculated with sterile water served as controls. Plants were maintained in a growth chamber for 5 days at 25 ± 1°C under 70 to 90% relative humidity. The first foliar lesions developed on leaves 2 days after inoculation and after 5 days, 80% of leaves were severely infected. Control plants remained healthy. The organism reisolated on PDA from leaf lesions was identical in morphology to the isolate used for inoculation. The pathogenicity test was carried out twice. Phoma spp. has been reported on Verbascum spp. P. novae-verbascicola has been very recently described (1). To our knowledge, this is the first report of the presence of P. novae-verbascicola on V. nigrum in Italy. At present, the economic importance of this disease is limited, but may become a more significant problem if the cultivation of this species increases. References: (1) M. M. Aveskamp et al. Studies in Mycology, 65: 1, 2010. (2) J. de Gruyter et al. Persoonia 15 (3): 369, 1993.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1480-1480 ◽  
Author(s):  
B. Liu ◽  
M. Munster ◽  
C. Johnson ◽  
F. J. Louws

In November 2009, cyclamen (Cyclamen persicum) plants with disease symptoms from a commercial greenhouse operation in the western part of North Carolina were sent to the Plant Diseases and Insect Clinic at North Carolina State University. Symptoms consisted of coalescing reddish and tan necrotic leaf spots with concentric circles. Other symptoms included darkened vascular tissue and decay of the corm, large roots, and petioles. Diseased leaves and stems were surface sterilized in 0.5% sodium hypochlorite for 3 min, air dried, and placed in petri dishes containing alkaline water agar. After 3 days of incubation at room temperature, fungal colonies were transferred to acidified potato dextrose agar. Isolation frequency after 5 days was 33% (three of nine pieces) and 16% (one of six pieces) from small leaf spots and petioles, respectively. Pure cultures of isolates were gray and black with abundant, aerial, gray whitish mycelia. Diseased plants were also incubated in a moist chamber at room temperature and sporulation was observed within 7 days. Conidia were tapered with rounded ends and produced in the acervulus and on the tips of setae, which is consistent with the morphology of described isolates of Colletotrichum fragariae. Similar setae were also observed directly on the fine roots of the original sample. The pathogenicity of single-spore cultures was tested by spraying four 2-month-old cyclamen plants with a conidial suspension (106 conidia/ml) and the plants were kept in a humid chamber for 24 h. Noninoculated controls (four plants) were sprayed with distilled water and subjected to the same conditions. The pathogenicity test was also repeated. Inoculated plants and controls were placed in a greenhouse with a temperature range from 22 to 25°C. After 7 to 10 days, symptomatic leaves and stems were observed on all the inoculated plants but not on the control plants. Fungi reisolated from 10 symptomatic leaf tissues had identical morphological features as the original isolates. Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits following the manufacturer's protocol (Qiagen Inc., Valencia, CA). Sequence analysis of the rRNA internal transcribed spacer (ITS) region of the cyclamen isolate (GenBank Accession No. HQ188923), based on the fragment amplified with ITS1 and ITS4 primers, showed 100% similarity to isolates of C. fragariae deposited in GenBank (Accession Nos. FJ172290 [ATCC MYA-4443 from cyclamen] and FJ810510 [ATCC MYA-4442 from silver date palm]) and Florida isolate C16 isolated from strawberry (1). In addition, the morphology and ITS sequences of the cyclamen isolate were identical to those of the C. fragariae voucher isolate from strawberry (GU174546). Results from disease symptoms, colony and spore morphology, pathogenicity tests, and ITS sequence analysis suggest that C. fragariae was the pathogen responsible for the disease symptoms on cyclamens. To our knowledge, this is the first report of a disease caused by C. fragariae on cyclamen in North Carolina and complements an earlier report from Florida (1). Reference: (1) S. J. MacKenzie et al. Plant Dis. 92:1432, 2008.


Plant Disease ◽  
2022 ◽  
Author(s):  
Martina Sanna ◽  
Massimo Pugliese ◽  
Maria Lodovica GULLINO ◽  
Monica Mezzalama

Maize (Zea mays L.) is a cereal crop of great economic importance in Italy; production is currently of 60,602,320 t, covering 588,597 ha (ISTAT 2021). Trichoderma species are widespread filamentous fungi in soil, well known and studied as biological control agents (Vinale et al., 2008). Seeds of a yellow grain hybrid (class FAO 700, 132 days) were collected in September 2020 from an experimental field located in Carmagnola (TO, Italy: GPS: 44°53'11.0"N 7°40'60.0"E) and tested with blotter test (Warham et al., 1996) to assess their phytosanitary condition. Over the 400 seeds tested, more than 50% showed rotting and development of green mycelium typical of the genus Trichoderma. Due to the high and unexpected percentage of decaying kernels, ten colonies were identified by morphological and molecular methods. Single conidia colonies of one Trichoderma (T5.1) strain were cultured on Potato Dextrose Agar (PDA) for pathogenicity tests, and on PDA and Synthetic Nutrient-Poor Agar (SNA) for morphological and molecular identification. The colonies grown on PDA and SNA showed green, abundant, cottony, and radiating aerial mycelium, and yellow pigmentation on the reverse. Colony radius after 72 h at 30°C was of 60-65 mm on PDA and of 50-55 mm on SNA. The isolates produced one cell conidia 2.8 - 3.8 µm long and 2.1 - 3.6 µm wide (n=50) on SNA. Conidiophores and phialides were lageniform to ampulliform and measured 4.5 – 9.7 µm long and 1.6 – 3.6 µm wide (n=50); the base measure 1.5 – 2.9 µm wide and the supporting cell 1.4 – 2.8 µm wide (n=50). The identity of one single-conidia strain was confirmed by sequence comparison of the internal transcribed spacer (ITS), the translation elongation factor-1α (tef-1α), and RNA polymerase II subunit (rpb2) gene fragments (Oskiera et al., 2015). BLASTn searches of GenBank using ITS (OL691534) the partial tef-1α (OL743117) and rpb2 (OL743116) sequences of the representative isolate T5.1, revealed 100% identity for rpb2 to T. afroharzianum TRS835 (KP009149) and 100% identity for tef-1α to T. afroharzianum Z19 (KR911897). Pathogenicity tests were carried out by suspending conidia from a 14-days old culture on PDA in sterile H2O to 1×106 CFU/ml. Twenty-five seeds were sown in pots filled with a steamed mix of white peat and perlite, 80:20 v/v, and maintained at 23°C under a seasonal day/night light cycle. Twenty primary ears were inoculated, by injection into the silk channel, with 1 ml of a conidial suspension of strain T5.1 seven days after silk channel emergence (BBCH 65) (Pfordt et al., 2020). Ears were removed four weeks after inoculation and disease severity, reaching up to 75% of the kernels of the twenty cobs, was assessed visually according to the EPPO guidelines (EPPO, 2015). Five control cobs, inoculated with 1 ml of sterile distilled water were healthy. T. afroharzianum was reisolated from kernels showing a green mold developing on their surface and identified by resequencing of tef-1α gene. T. afroharzianum has been already reported on maize in Germany and France as causal agent of ear rot of maize (Pfordt et al. 2020). Although several species of Trichoderma are known to be beneficial microorganisms, our results support other findings that report Trichoderma spp. causing ear rot on maize in tropical and subtropical areas of the world (Munkvold and White, 2016). The potential production of mycotoxins and the losses that can be caused by the pathogen during post-harvest need to be explored. To our knowledge this is the first report of T. afroharzianum as a pathogen of maize in Italy.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 550-550 ◽  
Author(s):  
H. B. Lee ◽  
C. J. Kim ◽  
H. Y. Mun

Perilla or kkaennip (Perilla frutescens (L.) Britton), an annual herb of the mint family, Lamiaceae, is used in salads and kimchi and for wrapping sliced raw fish. In September 2007, a disease occurred on greenhouse-produced perilla (cv. Manchu) in Gwangyang and Jeonnam provinces, Korea. Symptoms included leaf blight and irregularly shaped stem lesions approximately 1 to 3 cm long. Plants eventually died. In some greenhouses, 10 to 30%, and occasionally as much as 70%, of the plants were affected. Isolations on potato dextrose agar yielded a fungus with single conidiophores (439 to 656 [average 524] μm long × 6.2 to 11.6 [average 9.2] μm wide) with three to eight septa. Conidia were fusiform, obclavate to subcylindrical, straight or curved, and 30.4 to 180.1 (average 98.2) μm long × 6.7 to 18.1 (average 10.5) μm wide with 5 to 16 (commonly 13) distosepta. On the basis of morphological data and ITS rDNA sequences, the fungus was identified as Corynespora cassiicola (Berk. & Curt.) Wei. (1,2). Sequences of one isolate, EML-COR1, were more than 99% identical to sequences of C. cassiicola ATCC64204 (GenBank Accession No. AY238606) and C. cassiicola (GenBank Accession No. EF490450). In pathogenicity tests, the stems and leaves of two 2-month-old wounded and nonwounded potted plants (cv. Manchu) were sprayed until runoff with a conidial suspension of 5 × 104 conidia per ml. The plants were maintained for 48 h in a humid chamber and then moved to a greenhouse. Symptoms similar to those observed in the commercial greenhouse developed on wounded stems within 10 days. On nonwounded plants, symptoms developed 3 to 4 weeks after inoculation. C. cassiicola was reisolated from these lesions. Control plants (sprayed with distilled water) remained symptomless. The experiment was repeated with similar results. Although C. cassiicola causes blight of cucumber (Cucumis sativus L.), sesame (Sesamum indicum L.), and other crops, to our knowledge, this is the first report of C. cassiicola on perilla. References: (1) M. B. Ellis. Page 372 in: Dematiaceous Hyphomycetes. 1971. (2) J. L. D. Silva et al. Plant Pathol. 55:580, 2006.


Sign in / Sign up

Export Citation Format

Share Document