scholarly journals Take-All Root Rot of St. Augustinegrass: First Report in Mississippi

Plant Disease ◽  
2000 ◽  
Vol 84 (8) ◽  
pp. 921-921
Author(s):  
M. Tomaso-Peterson ◽  
L. E. Trevathan ◽  
M. S. Gonzalez

Take-all root rot has been reported as a destructive disease of St. Augustinegrass home lawns in Florida and Alabama (1). In June 1998 and 1999, St. Augustinegrass home lawns in central Mississippi developed chlorotic, thinning patches ranging from 0.5 to 4.5 m in diameter. By August of each summer, plants within affected patches were necrotic and dead. Roots of affected St. Augustinegrass were necrotic and shorter than those of unaffected plants; nodes on stolons were necrotic, and lesions developed on internodes. Ectotrophic runner hyphae and dark brown, lobed hyphopodia were visible on roots and aboveground plant parts, respectively. Symptomatic tissues collected from St. Augustinegrass home lawns were plated onto potato dextrose agar (PDA); the incitant of take-all root rot, Gaeumannomyces graminis(Sacc.) Arx & Olivier var. graminis, was isolated. Verification of G. graminis var. graminis was based on colony morphology and taxonomic identification consistent with the description by Walker (2). G. graminis var. graminis isolated from symptomatic St. Augustinegrass was grown on sterile tall fescue seed and incorporated into sterile sand/peat moss mix. Asymptomatic St. Augustinegrass sprigs were washed, and roots were removed prior to planting in infested and noninfested soil. Plants were cultured in the greenhouse for 60 days. St. Augustinegrass planted into noninfested soil was asymptomatic while plants collected from G. graminis var. graminis-infested soil were symptomatic for take-all root rot. Crowns and roots of affected plants were necrotic; leaves were chlorotic and necrotic. Both runner hyphae and lobed hyphopodia were visible. G. graminis var. graminis was reisolated from symptomatic tissues and confirmed as the incitant of take-all root rot. This is the first report of take-all root rot of St. Augustinegrass in Mississippi. References: (1) M. Elliott. Plant Dis. 77:206, 1993. (2) J. Walker. Trans. Br. Mycol. Soc. 58:427, 1972.

2021 ◽  
Author(s):  
Cameron Stephens ◽  
Travis W Gannon ◽  
Marc Cubeta ◽  
Tim L. Sit ◽  
Jim Kerns

Take-all root rot is a disease of ultradwarf bermudagrass putting greens caused by Gaeumannomyces graminis (Gg), Gaeumannomyces sp. (Gx), Gaeumannomyces graminicola (Ggram), Candidacolonium cynodontis (Cc), and Magnaporthiopsis cynodontis (Mc). Many etiological and epidemiological components of this disease remain unknown. Improving pathogen identification and our understanding of the aggressiveness of these pathogens along with growth at different temperatures will advance our knowledge of disease development to optimize management strategies. Take-all root rot pathogens were isolated from symptomatic bermudagrass root and stolon pieces from 16 different golf courses. Isolates of Gg, Gx, Ggram, Cc, and Mc were used to inoculate ‘Champion’ bermudagrass in an in planta aggressiveness assay. Each pathogen was also evaluated at 10, 15, 20, 25, 30, and 35C to determine growth temperature optima. Infected plant tissue was used to develop a real-time PCR high resolution melt assay for pathogen detection. This assay was able to differentiate each pathogen directly from infected plant tissue using a single primer pair. In general, Ggram, Gg, and Gx were the most aggressive while Cc and Mc exhibited moderate aggressiveness. Pathogens were more aggressive when incubated at 30C compared to 20C. While they grew optimally between 24.4 and 27.8C, pathogens exhibited limited growth at 35C and no growth at 10C. These data provide important information on this disease and its causal agents that may improve take-all root rot management.


2020 ◽  
Vol 110 (5) ◽  
pp. 1010-1017
Author(s):  
Jibin Zhang ◽  
Dmitri V. Mavrodi ◽  
Mingming Yang ◽  
Linda S. Thomashow ◽  
Olga V. Mavrodi ◽  
...  

A four-gene operon (prnABCD) from Pseudomonas protegens Pf-5 encoding the biosynthesis of the antibiotic pyrronitrin was introduced into P. synxantha (formerly P. fluorescens) 2-79, an aggressive root colonizer of both dryland and irrigated wheat roots that naturally produces the antibiotic phenazine-1-carboxylic acid and suppresses both take-all and Rhizoctonia root rot of wheat. Recombinant strains ZHW15 and ZHW25 produced both antibiotics and maintained population sizes in the rhizosphere of wheat that were comparable to those of strain 2-79. The recombinant strains inhibited in vitro the wheat pathogens Rhizoctonia solani anastomosis group 8 (AG-8) and AG-2-1, Gaeumannomyces graminis var. tritici, Sclerotinia sclerotiorum, Fusarium culmorum, and F. pseudograminearum significantly more than did strain 2-79. Both the wild-type and recombinant strains were equally inhibitory of Pythium ultimum. When applied as a seed treatment, the recombinant strains suppressed take-all, Rhizoctonia root rot of wheat, and Rhizoctonia root and stem rot of canola significantly better than did wild-type strain 2-79.


Plant Disease ◽  
2002 ◽  
Vol 86 (7) ◽  
pp. 813-813
Author(s):  
J. P. Mansilla ◽  
O. Aguín ◽  
M. C. Salinero

Camellias are widely cultivated in gardens and grown in nurseries for plant and flower production in northwestern Spain. Camellia japonica L. is most frequently grown, but many other camellia species and hybrids are also produced. In spring 1998, plants of Camellia sp. from a garden were observed to be affected by a root fungal pathogen, that formed a white mycelium that covered most of the roots, while aboveground plant parts showed a general decline. Infected roots were macerated and discolored. Fragments of the infected roots were surface-sterilized and placed in petri dishes containing potato dextrose agar and incubated at 24°C in the dark. The fungus formed a white mycelium that turned black in 1 week, developing pyriform swellings characteristic of Rosellinia necatrix Prill (1). To confirm pathogenicity, inoculum of the isolate was produced on wheat (Triticum aestivum L.) seeds autoclaved in glass vessels for 30 min at 120°C. Wheat seed cultures were started from disks of R. necatrix mycelium and grown at 24°C in the dark for 30 days. Pathogenicity tests were conducted on 48 2-year-old plants of the hybrid Camellia × williamsii cv. Mary Phoebe Taylor, which had been grown in 1.5-liter pots (one plant per pot) filled with soil in a glasshouse. The R. necatrix isolate was inoculated by adding 30 g of infected wheat seeds to each pot. The inoculum was mixed thoroughly with the substrate before potting. Another set of pots was left uninoculated, and served as a control. All pots were randomly arranged in a growth chamber at 22 to 24°C with a 12-h photoperiod. Seventeen days after inoculation, aerial symptoms of chlorosis and leaf fall were observed, while control plants remained symptomless. Inoculated plants died 3 months after inoculation. R. necatrix was reisolated from roots of all infected plants. To our knowledge, this is the first report of a root rot of camellia caused by R. necatrix, a pathogen causing white root rot mainly in deciduous fruit crops. Reference: (1) S. Freeman and A. Sztejnberg. Pages 71–73 in: Methods for Research on Soilborne Phytopathogenic Fungi. The American Phytopathological Society, St. Paul, MN, 1992.


Plant Disease ◽  
2002 ◽  
Vol 86 (6) ◽  
pp. 697-697
Author(s):  
M. L. Molinero-Ruiz ◽  
J. M. Melero-Vara

In 2001, sunflower (Helianthus annuus L.) plants with symptoms of stem and root rot and wilt were observed in Soria, Spain. Light brown, water-soaked lesions developed on the collar of infected plants and extended along the stem, affecting the pith and causing early and sudden wilt. White mycelium and sclerotia (0.5 to 2 mm long) formed in the pith of stems. The sclerotia were disinfested in NaClO (10% vol/vol) for 1 min, transferred to potato dextrose agar (PDA), and incubated at 20°C. The fungus consistently obtained was identified as Sclerotinia minor Jagger (1). Pathogenicity was confirmed in a greenhouse experiment (15 to 25°C, 13 h light). Seven-week-old plants of six genotypes of sunflower (‘Peredovik’, HA89, HA821, HA61, RHA274, and HA337) were inoculated by placing one PDA disk with active mycelial growth adjacent to each basal stem just below the soil line and covering it with peat/sand/silt (2:2:1, vol/vol). Six plants of each genotype were inoculated without wounding, and another six were inoculated immediately after stem base wounding with a scalpel; six wounded and uninoculated plants were used as controls. First symptoms (wilting) appeared 4 days after inoculation in all genotypes. Two weeks after inoculation, the percentage of dead plants ranged from 33 to 92% (depending on cultivar), white mycelium was observed at the base of affected plants, and sclerotia were present in the pith of diseased plants. There was no effect of plant wounding on disease incidence or severity, and the fungus was reisolated from inoculated plants. To our knowledge, this is the first report of S. minor in Spain. Reference: (1) L. M. Kohn. Mycotaxon IX 2:365, 1979.


Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 917-917
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Edgeworthia papyrifera, Oriental paperbush, is a deciduous flowering shrub becoming increasingly popular because of its clove-like perfumed flowers appearing in late winter-early spring. During August of 2009 in a commercial nursery close to Maggiore Lake (Verbano-Cusio-Ossola Province) in northwest Italy, 2-year-old plants of E. papyrifera showed extensive chlorosis and root rot. Twigs wilted and died, dropping leaves in some cases. Most frequently, wilted leaves persisted on stems. At the soil level, dark brown-to-black water-soaked lesions formed and coalesced, girdling the stem. All of the crown and root system was affected. Infected plants died within 14 days of the appearance of symptoms. Disease was widespread and severe, affecting 90 of the 100 plants present. After disinfestation for 1 min in a solution containing 1% NaOCl, rotting root and collar pieces of E. papyrifera consistently produced a Phytophthora-like organism when plated on a medium selective for oomycetes (3). The pathogen was identified morphologically as Phytophthora nicotianae (= P. parasitica) (2). On V8 agar, coenocytic hyphae, 4 to 8 μm in diameter, formed fluffy, aerial colonies and spherical, intercalary chlamydospores, 21.0 to 36.5 (average 26.7) μm in diameter. Colonies grew well at 35°C and stopped growing at 40°C. Sporangia were produced by growing a pure hyphal-tip culture in a diluted, sterilized soil-extract. Sporangia were borne singly, laterally attached to the sporangiophore, were noncaducous, spherical to ovoid, papillate, and measured 28.6 to 55.2 × 22.4 to 45.1 (average 42.4 × 34.6) μm, length/breadth ratio (1.1:1)-1.2:1-(1.3:1). Papillae measured 3.1 to 7.6 (average 4.6) μm. The internal transcribed spacer (ITS) region of rDNA of a single isolate was amplified with primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 839-bp segment showed 99% homology with the sequence of P. nicotianae (No. AJ854296). The sequence has been assigned the GenBank No. GU353341. Pathogenicity of isolates Edg.1 and Edg.2 obtained, respectively, from the root and collar of an infected plant was confirmed by inoculating 1-year-old plants of E. papyrifera. Both strains were grown for 15 days on a mixture of 70:30 wheat/hemp kernels, and 4 g/liter of the inoculum was mixed into a substrate containing sphagnum peat moss/pumice/pine bark/clay (50:20:20:10 vol/vol). One plant per 3-liter pot was transplanted into the substrate and constituted the experimental unit. Five plants were used for each test strain and noninoculated control treatment; the trial was repeated once. All plants were kept in a greenhouse at 25 to 28°C. Plants inoculated with Edg.1 and Edg.2 developed chlorosis and root rot 18 and 14 days after the inoculation, respectively, and wilt rapidly followed. Control plants remained symptomless. P. nicotianae was consistently reisolated from inoculated plants. To our knowledge, this is the first report of P. nicotianae on E. papyrifera in Italy as well as worldwide. The current economic importance of the disease is minor due to the limited number of farms that grow this crop in Italy, although spread could increase as the popularity of plantings expand. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997 (2) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phtytopathological Society, St Paul, MN, 1996. (3) H. Masago et al. Phytopathology 67:425, 1977.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 591-591 ◽  
Author(s):  
K. L. Schroeder ◽  
T. C. Paulitz

Rhizoctonia root rot occurs commonly on canola (Brassica napus L.) in Washington State. Recently, isolates of an additional pathogen were found to be involved in this disease complex. Isolates of an AG-I-like Ceratobasidium sp. were collected from roots and root zone soil in central Washington near Ritzville. Identity of selected isolates was verified by sequencing the internal transcribed spacer (ITS) region of the rDNA (GenBank Accession Nos. JQ247570, JQ247571, and JQ247572), with a 90 to 93% identity to AG-I. All isolates also amplified with AG-I-like specific primers (1). Six isolates were included in pathogenicity assays conducted in the greenhouse. There were five replicates of three plants for each treatment and the experiment was conducted twice. Pasteurized soil was infested with ground oat inoculum (1%) and placed into containers (3.8 × 21 cm). Infested soils were seeded with canola, chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.), pea (Pisum sativum L.), barley (Hordeum vulgare L.), or wheat (Triticum aestivum L.). After 3 weeks of incubation at 15°C, the plants were destructively harvested. The emergence of canola was consistently reduced in soil infested with a Ceratobasidium sp., with reductions of 0 to 23% (average 11%). There was no postemergence damping-off, a symptom commonly associated with AG-2-1 (2). Plant height and top dry weights were significantly reduced for canola seeded into infested soil. Heights of plants growing in infested soil was reduced by 25 to 53% (average 42%) and top dry weight was reduced by 37 to 81% (average 61%) compared with the noninfested control. The legume hosts tested in this study were also affected by this Ceratobasidium sp., but to a lesser extent. Compared with the noninfested controls, there was evidence of preemergence damping-off in chickpea (0 to 27%, average 13%) and pea plants were consistently stunted (5 to 23%, average 12%). Chickpea and pea plants grown in infested soil also had reduced top dry weights of 9 to 28% (average 17%) and 13 to 35% (average 21%), respectively. The roots of all infected hosts had a characteristic brown discoloration with tapered, rotted root tips (spear tips). There was no reduction in emergence or plant height of wheat and barley; there was inconsistent reduction in dry weight of these plants. To our knowledge, this is the first report of a Ceratobasidium sp. causing disease on canola in Washington State. References: (1) P. A. Okubara et al. Phytopathology 98:837, 2008. (2) T. C. Paulitz et al. Plant Dis. 90:829, 2006.


1998 ◽  
Vol 78 (1) ◽  
pp. 145-150 ◽  
Author(s):  
K. L. Bailey ◽  
Guy P. Lafond ◽  
Daryl Domitruk

Changes in tillage and other agronomic practices have shown benefits of increased grain yield for many crops, but these changes may alter the micro-environment resulting in changes to populations of disease-causing agents and other micro-organisms. This study examined the effects of row spacing (10, 20, 30 cm), seeding rate (54, 108, 161 kg ha−1 for barley; 67, 134, 202 kg ha−1 for spring wheat) and seed-placed phosphorus (0, 8, 16 kg ha−1) on root diseases in spring wheat and barley using a zero-tillage production system in four environments. Root rot severity was assessed by visual ratings and the causal agents were identified. Analyses of variance indicated significant differences in root rot severity and the incidence of some causal agents for the main treatment effects (i.e. row spacing, seeding rate, seed-placed phosphorus) and no significant interactions between locations, years, and cultural practices. Contrasts of treatment means showed that higher rates of seeding decreased root rot severity and the incidence of Fusarium in wheat but these effects were small (less than 6%). The higher rates of monoammonium phosphate fertilizer reduced root rot severity in barley by 7% and the incidence of Gaeumannomyces graminis var. tritici in wheat by greater than 40%. Wider row spacings showed a small reduction of 6% in root rot severity in wheat but mostly had no effect on root diseases. Wheat yields were negatively associated with root rot severity in three of four environments. Fertility, root rot severity, and seeding rate had the greatest impact on wheat yield. Root diseases did not affect barley yields. Therefore, the use of wider row spacings and higher seeding rates with zero tillage practices will not lead to adverse effects on root diseases in wheat and barley. Phosphorus fertilizer should be used to reduce losses resulting from take-all disease in wheat. Key words: Zero tillage, cultural practices, common root rot, take-all, cereals


1997 ◽  
Vol 87 (5) ◽  
pp. 551-558 ◽  
Author(s):  
Dal-Soo Kim ◽  
R. James Cook ◽  
David M. Weller

Strain L324-92 is a novel Bacillus sp. with biological activity against three root diseases of wheat, namely take-all caused by Gaeumannomyces graminis var. tritici, Rhizoctonia root rot caused by Rhizoctonia solani AG8, and Pythium root rot caused mainly by Pythium irregulare and P. ultimum, that exhibits broad-spectrum inhibitory activity and grows at temperatures from 4 to 40°C. These three root diseases are major yieldlimiting factors for wheat in the U.S. Inland Pacific Northwest, especially wheat direct-drilled into the residue of a previous cereal crop. Strain L324-92 was selected from among approximately 2,000 rhizosphere/rhizoplane isolates of Bacillus species isolated from roots of wheat collected from two eastern Washington wheat fields that had long histories of wheat. Roots were washed, heat-treated (80°C for 30 min), macerated, and dilution-plated on 1/10-strength tryptic soy agar. Strain L324-92 inhibited all isolates of G. graminis var. tritici, Rhizoctonia species and anastomosis groups, and Pythium species tested on agar at 15°C; provided significant suppression of all three root diseases at 15°C in growth chamber assays; controlled either Rhizoctonia root rot, takeall, or both; and increased yields in field tests in which one or more of the three root diseases of wheats were yield-limiting factors. The ability of L324-92 to grow at 4°C probably contributes to its biocontrol activity on direct-drilled winter and spring wheat because, under Inland Northwest conditions, leaving harvest residues of the previous crop on the soil surface keeps soils cooler compared with tilled soils. These results suggest that Bacillus species with desired traits for biological control of wheat root diseases are present within the community of wheat rhizosphere microorganisms and can be recovered by protocols developed earlier for isolation of fluorescent Pseudomonas species effective against take-all.


Sign in / Sign up

Export Citation Format

Share Document