scholarly journals Spathiphyllum sp.: A New Natural Host of Impatiens necrotic spot virus

Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 448-448 ◽  
Author(s):  
A. Materazzi ◽  
E. Triolo

In September 1999, several Spathiphyllum plants grown in a greenhouse in Tuscany (Italy) showed leaf symptoms in the form of concentric chlorotic ringspots, line patterns, and irregular chlorotic blotches. These symptoms developed into localized necrosis. Crude sap of tissues showing symptoms was mechanically inoculated to young symptomless Spathiphyllum plants and to Nicotiana benthamiana and N. clevelandii. Samples drawn from symptomatic and symptomless tissues of naturally or artificially infected Spathiphyllum and Nicotiana plants were tested for the presence of Alfalfa mosaic virus (AMV), Arabis mosaic virus (ArMV), Cucumber mosaic virus (CMV), Dasheen mosaic virus (DsMV), Impatiens necrotic spot virus (INSV), Potato X virus (PVX), Potato Y virus (PVY), Tobacco mosaic virus (TMV), and Tomato spotted wilt virus (TSWV) by double-antibody sandwich enzyme-linked immunosorbent assay carried out with commercial antisera. The symptomatic tissues obtained from Spathiphyllum and Nicotiana plants gave a positive reaction only for INSV. The symptomless samples obtained from various parts of the infected Spathiphyllum plants gave a negative reaction, even after 1 year from the appearance of localized necrosis, suggesting a non-systemic infection in this new host. This is the first report of infection of Spathiphyllum sp. by INSV.

2013 ◽  
Vol 14 (1) ◽  
pp. 24 ◽  
Author(s):  
John R. Fisher

Two Hosta sp. ‘So Sweet’ plants and one Hosta sieboldii (labeled as ‘Albo-marginata’) plant showing a suspected virus-like leaf mottle symptom tested negative for the Potyvirus group, Hosta virus X, Alfalfa mosaic virus, Arabis mosaic virus, Cucumber mosaic virus, Impatiens necrotic spot virus, Tobacco mosaic virus, Tobacco ringspot virus, Tomato ringspot virus, and Tomato spotted wilt virus by ELISA. DsRNA analysis produced a banding profile suggestive of a viral infection, and dsRNA was used as template to synthesize cDNAs for use with tobravirus group and Tobacco rattle virus (TRV) specific PCR primers. Amplicons were cloned and sequenced, and results showed two distinct populations of sequences: the two So Sweet isolates were ∼99% identical to each other but only ∼92% identical to the Albo-marginata isolate. These results represent the first confirmed report of TRV in Hosta in Ohio, and further demonstrate that there are at least two nucleotide sequence variants of the virus infecting Ohio Hosta. Accepted for publication 21 December 2012. Published 30 March 2013.


Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1334-1334 ◽  
Author(s):  
R. J. McGovern ◽  
J. E. Polston ◽  
B. K. Harbaugh

In May 1997, inclusions typical of a tospovirus were visualized by light microscopy in leaf tissue of lisianthus (Eustoma grandiflorum) exhibiting stunting, necrotic ringspots, leaf distortion, and systemic necrosis. Wilting and plant death were the final symptoms observed. Affected plants occurred at low incidence (<0.1%) in greenhouse-grown lisianthus in Manatee County, FL. Symptomatic tissue tested positive for impatiens necrotic spot virus (INSV) and negative for tomato spotted wilt virus (TSWV) with enzyme-linked immunosorbent assay (ELISA; Agdia, Elkhart, IN). Mechanical transmission of the virus to lisianthus and tomato was attempted by triturating 1 g of symptomatic leaf tissue in 7 ml of a buffer consisting of 0.01 M Tris and 0.01 M sodium sulfite, pH 7.3. Six plants of lisianthus cv. Maurine Blue and three of tomato (Lycopersicon esculentum) cv. Lanai at the second true-leaf stage were inoculated following abrasion of leaves with Carborundum. An equal number of controls were inoculated with buffer alone. Plants were maintained in a controlled environment chamber with a 12-h photoperiod, day/night temperatures of 21/16°C, and light intensity of 120 μE · s-l · m-2. Transmission rates were 100 and 0% to lisianthus and tomato, respectively. Chlorotic local lesions followed by chlorotic ringspots were observed in inoculated lisianthus leaves 4 days after inoculation. Stunting, leaf distortion, and necrotic ringspots appeared in noninoculated leaves of lisianthus plants within 3 to 4 weeks after inoculation. Buffer-inoculated lisianthus and all tomato plants remained symptomless and tested negative for INSV by ELISA. All symptomatic lisianthus tested positive for INSV by ELISA. The symptoms we observed in lisianthus due to infection by INSV were more severe than those previously reported in this host (1,2). The occurrence of such strains of INSV at high incidences could pose a significant threat for commercial lisianthus production. References: (1) M. K. Hausbeck et al. Plant Dis. 76:795, 1992. (2) H. T. Hsu and R. H. Lawson. Plant Dis. 75:292,1991.


2003 ◽  
Vol 4 (1) ◽  
pp. 40 ◽  
Author(s):  
N. Martínez-Ochoa ◽  
A. S. Csinos ◽  
E. B. Whitty ◽  
A. W. Johnson ◽  
M. J. Parrish

Tomato spotted wilt caused by Tomato spotted wilt virus (TSWV) continues to be a serious disease problem on tobacco (Nicotiana tabacum L.), peanut (Arachis hypogaea L.), tomato (Lycopersicon esculentum Mill.), and pepper (Capsicum annum L.) in the southeastern United States. Impatiens necrotic spot virus (INSV, formerly known as TSWV-I) is an emerging virus found mostly in greenhouse production of ornamentals and is also vectored by thrips. A few years ago INSV was detected in peanut in Georgia and Texas and its occurrence appears to be increasing). Mixed infections of TSWV and INSV in tobacco have been observed within the last two years in North Carolina and Kentucky. Our objective was to sample several locations in Georgia, Florida, South Carolina and Virginia to confirm and report the presence of natural TSWV and INSV mixed infections in tobacco. Accepted for publication 14 March 2003. Published 17 April 2003.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 425-429 ◽  
Author(s):  
T. Ghotbi ◽  
N. Shahraeen ◽  
S. Winter

Damage to agricultural crops by tospoviruses has occurred sporadically in Iran in the past; however, since 2000, outbreaks of tospoviruses have been recorded every year. The most affected ornamental crops were surveyed in two main cultivation areas in provinces of Markazi (Mahallat) and Tehran in 2000-01 and 2001-02. A few weed species also were collected. In all, 513 samples (with or without any conspicuous virus symptoms) were collected and analyzed by double- and triple-antibody sandwich enzyme-linked immunosorbent assay (ELISA) with polyclonal antibodies to Tomato spotted wilt virus (TSWV), Impatiens necrotic spot virus (INSV), and Tomato Varamin virus (ToVV), a new Tospovirus sp. from Iran. These viruses frequently were detected in samples of many different ornamentals and often in mixed infections, whereas Iris yellow spot virus (IYSV) was detected in only four samples. ToVV also was found in weeds growing in Chrysanthemum fields and in a Cuscuta sp. Applying double-antibody sandwich ELISA, no positive reactions were found with Tomato chlorotic spot virus (TCSV). Of the total of 513 samples tested, 345 samples did not react with any Tospovirus antisera. In Tehran, INSV was identified in 21 samples (10%), IYSV in 4 samples (2%), TSWV in 16 samples (8%), and ToVV in 22 samples (11%). In Markazi province, INSV was identified in 24 samples (8%), IYSV in 1 sample (0.5%), TSWV in 40 samples (13%), and ToVV in 36 samples (12%). ToVV was found to prevail in Tehran province and TSWV in Markazi. Thrips spp. present at the plant sampling sites also were collected and identified.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1124-1124 ◽  
Author(s):  
B. E. González-Pacheco ◽  
L. Silva-Rosales

Mexico contributes 20% of the total worldwide pepper exports (1). Impatiens necrotic spot virus (INSV) (genus Tospovirus; family Bunyaviridae) has emerged and has possibly caused diseases in various crops and ornamentals in Mexico. INSV was treated as a quarantine virus in Mexico (2) but not anymore. During the growing seasons of 2009 to 2011, surveys were conducted in the counties of Guanajuato and Querétaro in the states of the same names. Sampling included tomatillo (Physalis ixocarpa) and pepper (Capsicum spp.) plantations where plants with possible viral symptoms were observed. The symptoms observed were dark necrotic spots on some leaves and on the stems. These were similar to those observed elsewhere (3). Leaf spots further developed into localized necrotic areas. Using ELISA (Agdia, Elkhart, IN) with polyclonal antibodies, all collected samples showing symptoms tested positive for INSV and negative for Alfalfa mosaic virus (AMV), Cucumber mosaic virus (CMV), Potato X virus (PVX), Potato Y virus (PVY), Tobacco mosaic virus (TMV), Tomato spotted wilt virus (TSWV), Tobacco ringspot virus (TRSV), and Tomato ringspot virus (ToRSV). In order to identify the causal agent of these symptoms, INSV-specific sequences available for the S genomic fragments were obtained from NCBI GenBank. They were aligned and used to design primers to amplify a 250-bp fragment from total extracted RNA from healthy and symptomatic plants using reverse transcription (RT)-PCR. Primers used were INSVF (5′CCCAACTGCCTCTTTAGTGC3′) and INSVR (5′GGACAATGGATCTGCTCTGA3′). Three extracted plasmids, each containing an amplified and cloned fragment for the pepper and tomatillo isolates, were sequenced (GenBank Accession Nos. KC503051 and KC503052, respectively). Both nucleotide sequences showed 95% identity with the Chinese, Italian, and Japanese INSV sequences (FN400773, DQ425096, and AB207803, respectively) and 94% identity to other INSV isolates (4). The putative Mexican INSV pepper isolate, derived from a necrotic spot, was mechanically inoculated to other experimental host plants after grinding 1 g of symptomatic leaf tissue in 3 ml of a buffer with quaternary ammonium salts at 0.5%, pH 7.8. Ten plants, at the second true-leaf stage, of each Capsicum annuum cv. cannon and Citrullus lanatus were inoculated after carborundum abrasion of the second true leaf. At 15 days post inoculation, systemic chlorotic necrotic spots, stunting, and apical malformation were observed in capsicum plants while wilting was shown in watermelon plants. RT-PCR analyses and nucleotide sequence of the amplified product confirmed the presence and identity of both virus isolates. To our knowledge, this is the first report of INSV in Mexico found naturally in tomatillo and pepper and experimentally in watermelon plants. Derived from this report, INSV distribution in Mexico should be studied due to its potential impact on these two economically important crops. References: (1) Food and Agriculture Organization of the United Nations. FAOSTAT, retrieved online at http://faostat.fao.org , 2013. (2) DGSV-CNRF. Impatiens necrotic spot virus (INSV). SAGARPA-SENASICA. México, 2011. (3) M. Ding et al. Plant Dis. 95:357, 2011. (4) I. Mavrič et al. Plant Dis. 85:12, 2001.


Plant Disease ◽  
2002 ◽  
Vol 86 (12) ◽  
pp. 1403-1403 ◽  
Author(s):  
M. Tessitori ◽  
A. Reina ◽  
V. Catara ◽  
G. Polizzi

Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV), and Impatiens necrotic spot virus (INSV) are among the most important viral pathogens of ornamental plants (1). Polygala myrtifolia L. (myrtle-leaf milkwort), originating from South Africa, and a member of the Polygalaceae, was recently introduced in Italy as a cultivated ornamental shrub for its fast and attractive free-flowering growth and drought-resistant characteristics. It can become an invasive plant and is now considered a serious problem in coastal areas of Australia where it was introduced as a garden plant. In Italy, P. myrtifolia is propagated by cuttings in commercial nurseries during the summer. In the winter of 2002, plants of P. myrtifolia growing in pots in an ornamental nursery in Sicily showed virus-like mosaic and malformation of leaves that appeared lanceolate with a lack of flowering. Leaf tissue was analyzed by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with polyclonal antisera to CMV, TSWV (Lettuce type), and INSV. Positive ELISA results were obtained only with the CMV polyclonal antisera. Complete remission of symptoms was observed on new flushes after pruning and incubation of infected plants at warm temperatures (30 and 20°C, day and night, respectively). This evidence led to the hypothesis that the disease or virus was disseminated by transportation and propagation of plants without visible symptoms during the hot season. A survey was also performed in two historical gardens of Catania (Sicily) where a group of apparently healthy P. myrtifolia plants, from the previously mentioned ornamental nursery in Sicily, were introduced as a single specimen or to form a hedge. These plants showed the same leaf malformations and mosaic symptoms observed in the nursery. DAS-ELISA confirmed the presence of CMV but not TSWV and INSV. To our knowledge, this is the first report of CMV on P. myrtifolia and it adds a new host to over 1,000 species (85 plant families) infected by this virus. Reference: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997.


HortScience ◽  
2002 ◽  
Vol 37 (3) ◽  
pp. 543-546 ◽  
Author(s):  
M-C Sanchez-Cuevas ◽  
S.G.P. Nameth

Double petunia plants expressing virus-like symptoms were collected in greenhouses and garden centers throughout Ohio in Spring 1997 and 1998 in an effort to determine the frequency and distribution of petunia viruses present in the state. Direct antibody-sandwich and indirect enzyme-linked immunosorbent assay (ELISA) were conducted with commercial antisera made against 13 viruses, a potyvirus kit capable of detecting 80 different potyviruses, and our antiserum raised against a tobamo-like virus inducing severe mosaic in double petunia. Viral-associated double-stranded ribonucleic acid (dsRNA) analysis and light microscopy for detection of inclusion bodies were also carried out. ELISA, dsRNA analysis, and light microscopy revealed the presence of tobacco mosaic tobamovirus, an unknown tobamo-like petunia virus, tomato ringspot nepovirus, tobacco streak ilarvirus, and tobacco ringspot nepovirus. Tomato aspermy cucumovirus, tomato spotted wilt tospovirus, impatiens necrotic spot tospovirus, alfalfa mosaic virus, cucumber mosaic cucumovirus, potato virus X potexvirus, and chrysanthemum B carlavirus were not detected. No potyviruses were identified. A number of plants with virus-like symptoms tested negative for all viruses.


Sign in / Sign up

Export Citation Format

Share Document