scholarly journals Occurrence and Etiology of Brown Apical Necrosis on Persian (English) Walnut Fruit

Plant Disease ◽  
2002 ◽  
Vol 86 (6) ◽  
pp. 599-602 ◽  
Author(s):  
A. Belisario ◽  
M. Maccaroni ◽  
L. Corazza ◽  
V. Balmas ◽  
A. Valier

In 1998, a severe fruit drop was observed in Italy, principally on cv. Lara Persian (English) walnut (Juglans regia). Dropped fruit showed a brown patch at the blossom end and blackening and rot of inner tissues. The disease, called brown apical necrosis (BAN), was investigated on fruit collected in Italy and France in 1999. In 2000, studies were carried out in three walnut orchards located in Italy and in France to substantiate the etiology of BAN. Isolations performed from inner diseased fruit tissues yielded several fungi, in decreasing frequency of isolation: species of Fusarium and Alternaria, and one species each of Cladosporium, Colletotrichum, and Phomopsis. However, only Fusarium spp. were recovered from stigmas of BAN-affected fruit. The fungi associated with BAN-diseased fruit and species composition differed among locations and over time, confirming results obtained in previous investigations. The species of Fusarium used in pathogenicity tests reproduced BAN-disease symptoms when inoculated on fruit, whereas an Alternaria alternata isolate caused only limited necrosis of the style. However, the role of the other fungi commonly isolated from BAN-diseased fruit remains to be defined. The walnut blight pathogen, Xanthomonas arboricola pv. juglandis, occasionally was isolated from BAN-diseased fruit. No correlation was found between the extent of external brown patches and the size of inner lesions. Repeated isolations from and inoculations of fruit demonstrated that BAN can be considered a complex disease, and the inner infections originate from the style of the fruit.

Author(s):  
Ernesto Antonio Moya-Elizondo ◽  
María Jose Lagos ◽  
Juan G. San Martín ◽  
Braulio E. Ruiz

This is the first report of Alternaria alternata and Fusarium spp. causing brown apical necrosis (BAN) in walnut fruit in southern Chile. English walnut (Juglans regia L.) is the second most widely grown fruit in Chile. The bacterial pathogen Xanthomonas arboricola pv. juglandis affects walnut production in Chile and has been associated with apical necrosis symptom and premature fruit drop; this research focused on determining if fungal pathogens were associated with this damage. The presence of BAN in commercial walnut orchards in southern Chile reveals the need for improved phytosanitary programs to control this disease.


Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 691-696 ◽  
Author(s):  
Jeannette Guajardo ◽  
Sebastián Saa ◽  
Natalia Riquelme ◽  
Gregory Browne ◽  
Cristian Youlton ◽  
...  

English (Persian) walnut (Juglans regia) trees affected by root and crown rot were surveyed in five regions of central Chile between 2015 and 2017. In each region, nine orchards, ranging from 1 to 21 years old, were randomly selected and inspected for incidence and severity of tree decline associated with crown and root rot. Soil and symptomatic crown and root tissues were collected and cultured in P5ARP semiselective medium to isolate potential oomycete pathogens, which were identified through morphology and molecularly using ITS sequences in the rDNA gene and beta tubulin gene. The most frequently isolated species was Phytophthora cinnamomi. Pathogenicity tests were conducted with representative oomycete isolates. P. cinnamomi, P. citrophthora, and Pythium ultimum were all pathogenic in J. regia. Nevertheless, only P. cinnamomi and P. citrophthora were pathogenic to English walnut. Py. ultimum caused limited levels of root damage to English walnut seedlings. Our research indicates that as the Chilean walnut industry has expanded, so have walnut crown and root rots induced by oomycetes.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 636-652 ◽  
Author(s):  
ShuaiFei Chen ◽  
David P. Morgan ◽  
Janine K. Hasey ◽  
Kathleen Anderson ◽  
Themis J. Michailides

Species of family Botryosphaeriaceae and genus Diaporthe (anamorph: genus Phomopsis, family Diaporthaceae) were reported and caused diseases on various fruit and nut trees in California. In the last several years, diseases on English walnut (Juglans regia) caused by species of Botryosphaeriaceae and Diaporthe were observed frequently in California. Disease symptoms include stem canker; shoot canker and blight; twig, leaf, and fruit blight; and necrotic leaf lesions. Isolates of the pathogen were collected from English walnut in 13 counties in California. The aims of this study were to identify these isolates and to test their pathogenicity to English walnut cultivars. In total, 159 California isolates were identified based on comparisons of DNA sequence data of the internal transcribed spacer, translation elongation factor 1-α, and β-tubulin gene regions, and combined with the morphological features of the cultures and conidia. Research results revealed that isolates represent 10 species of Botryosphaeriaceae and two species of Diaporthe. These species include Botryosphaeria dothidea, Diplodia mutila, D. seriata, Dothiorella iberica, Lasiodiplodia citricola, Neofusicoccum mediterraneum, N. nonquaesitum, N. parvum, N. vitifusiforme, Neoscytalidium dimidiatum, Diaporthe neotheicola, and D. rhusicola. Pathogenicity on three English walnut cultivars (‘Chandler’, ‘Tulare’, and ‘Vina’) using a mycelium plug inoculation method revealed that all these species are pathogenic to all the tested cultivars, with L. citricola and N. parvum being the most pathogenic species, followed by N. mediterraneum, N. dimidiatum, and B. dothidea. Chandler was more tolerant to infection than Tulare and Vina. Results in this study determined that multiple numbers of the Botryosphaeriaceae fungi and two Diaporthe spp. cause cankers and blights of English walnut and vary in their virulence from highly to slightly virulent, respectively.


2010 ◽  
pp. 449-452 ◽  
Author(s):  
A. Belisario ◽  
A. Santori ◽  
G. Potente ◽  
A. Fiorin ◽  
B. Saphy ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1565-1570 ◽  
Author(s):  
Concepció Moragrega ◽  
Josep Matias ◽  
Neus Aletà ◽  
Emilio Montesinos ◽  
Mercé Rovira

Etiological and epidemiological aspects of apical necrosis of walnut fruit were studied on cultivars Chandler, Franquette, and Hartley in a Spanish walnut orchard during 2007 and 2008. Affected fruit showed brown necrosis beginning at the blossom end of nuts; these symptoms differed from lesions of common blight of walnut (Xanthomonas arboricola pv. juglandis). X. arboricola pv. juglandis was consistently isolated from apical lesions throughout the growing season. Field isolates reproduced symptoms observed in the orchard when inoculated on immature detached walnut fruit in the laboratory. Sporadic occurrence of Fusarium spp. and Alternaria spp., mainly in dropped fruit, was attributed to secondary colonization of apical lesions that were originally caused by X. arboricola pv. juglandis. Apical necrosis and common blight were similar in disease epidemiology and cultivar susceptibility; a major increase in epidemics occurred at initial fruit development, and cvs. Chandler and Hartley were more affected than cv. Franquette. Our results suggest that apical necrosis is a new manifestation of walnut blight characterized by distinct symptoms and severe premature fruit drop.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 426-426 ◽  
Author(s):  
A. Belisario ◽  
M. Maccaroni ◽  
A. Coramusi ◽  
L. Corazza ◽  
B. M. Pryor ◽  
...  

During the last 5 years, two new diseases, brown apical necrosis (BAN) and gray necrosis (GN), were observed on English walnut (Juglans regia) and hazelnut (Corylus avellana), respectively (2,3). Both diseases caused severe fruit drop resulting in yield loss often exceeding 30%. Previous work demonstrated that BAN and GN are disease complexes caused by several fungi (Alternaria spp., Fusarium spp., and a Phomopsis sp.) (2,3). In both diseases, preliminary identification of Alternaria spp. revealed they were a complex of small-spored catenulate taxa related to A. alternata. To further characterize these taxa, additional pathogenicity tests and morphological examinations were conducted with isolates obtained from each host. Single-spored isolates were prescreened for pathogenicity by inoculating detached, surface-disinfested hazelnut leaves or walnut leaflets (1). Only isolates that produced foliar lesions after 5 days were used in subsequent fruit inoculations. From this screening, 35 isolates were selected (19 from walnut and 16 from hazelnut). For each isolate, attached fruit of respective hosts were inoculated at bloom by placing 10 μl of a conidial suspension (1 × 106 conidia per ml of H2O + 0.26% agar) onto the stigmas (150 fruit per isolate). Controls (150 fruit) were treated with agar solution only. After 15 days, fruit were examined for development of disease symptoms, and examination continued until fruit maturation (late July). Approximately 20 to 50% of the inoculated fruit displayed discoloration or necrosis of internal tissue, particularly the pericarp and the embryo, although symptoms were more limited than those typically seen in fully expressed BAN and GN. No differences in symptoms were evident among the isolates tested. The controls showed no symptom development initially, although 5% began to develop discoloration at fruit maturity. Fungal isolates used as inoculum were reisolated from all symptomatic fruit by surface disinfesting tissue from the margins of necrotic lesions. For each isolate, the conidial characteristics were described from cultures grown under defined conditions (4). Three distinct groups of isolates were identified. Alternata sp. group isolates produced conidial chains (8 to 20 spores) with numerous secondary and occasionally tertiary chains branching from apical and median cells. Conidia were typically ovate and often possessed a one-celled apical extension. Tenuissima sp. group isolates developed conidial chains (10 to 22 spores) with occasional branching forming secondary chains from apical and median cells. Conidia were ovate to obclavate, often with long apical extensions (10 to 35 μm). Arborescens sp. group isolates developed conidial chains (5 to 12 spores) with numerous secondary, tertiary, and quaternary short chains branching from apical cells. Conidia were typically ovate with minimal apical extensions. Of the walnut isolates, 12, 4, and 3 were from the arborescens, alternata, and tenuissima sp. groups, respectively. Of the hazelnut isolates, 7, 6, and 3 were from the arborescens, alternata, and tenuissima sp. groups, respectively. The finding that Alternaria from several distinct sp. groups can cause similar disease on a single host is consistent with previous work on pistachio, almond, and pear (4). References: (1) A. Belisario et al. Plant Dis. 83:696, 1999. (2) A. Belisario et al. Plant Dis. 86:599, 2002. (3) A. Belisario et al. Inf. Agrario 59:71, 2003. (4) B. M. Pryor et al. Phytopathology 92:406, 2002.


Plant Disease ◽  
2020 ◽  
Vol 104 (2) ◽  
pp. 533-550 ◽  
Author(s):  
Ana López-Moral ◽  
María Lovera ◽  
María del Carmen Raya ◽  
Nerea Cortés-Cosano ◽  
Octavio Arquero ◽  
...  

English walnut (Juglans regia L.) is considered an economically important fruit crop worldwide. In Spain, little attention has been given to walnut diseases owing to the minor economic importance of the walnut crop in the country until recently. In 2017, typical symptoms of branch dieback and shoot blight of English walnut were observed in southern Spain. From 2017 to 2018, 10 commercial walnut orchards showing disease symptoms were surveyed. Botryosphaeriaceae and Diaporthe fungi were consistently isolated from affected shoots. Cytospora isolates were also recovered with minor relevance. Representative isolates of each fungal group were characterized based on colony and conidial morphology, optimum growth temperature, and comparison of DNA sequence data from the internal transcribed spacer, elongation factor 1-α, and β-tubulin genomic areas. Pathogenicity tests were performed on detached and attached shoots and on detached fruit by inoculating them with mycelial plugs. Botryosphaeriaceae and Diaporthe isolates had higher optimum growth temperatures (≈25 to 27°C) than Cytospora sp. (19.5°C). The following species were identified: Botryosphaeriaceae: Botryosphaeria dothidea, Diplodia seriata, Dothiorella sarmentorum, Dothiorella sp., Neofusicoccum mediterraneum, and N. parvum; Diaporthe: Diaporthe neotheicola, Dia. rhusicola, Diaporthe sp., and Phomopsis amygdali; and Cytospora sp. Botryosphaeriaceae isolates were the most aggressive fungi to walnut in all tissues evaluated, followed by Diaporthe isolates and Cytospora sp. N. parvum was the most virulent among the remaining species tested in any of the tissues evaluated, followed by B. dothidea or N. mediterraneum. This work is the first report to identify the fungal species causing this complex disease of English walnut in Spain and Europe.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 761-771 ◽  
Author(s):  
A. Eichmeier ◽  
J. Pecenka ◽  
M. Spetik ◽  
T. Necas ◽  
I. Ondrasek ◽  
...  

Juglans regia L. (English walnut) trees with cankers and dieback symptoms were observed in two regions in the Czech Republic. Isolations were made from diseased branches. In total, 138 fungal isolates representing 10 fungal species were obtained from wood samples and identified based on morphological characteristics and molecular methods: Cadophora novi-eboraci, Cadophora spadicis, Cryptovalsa ampelina, Diaporthe eres, Diplodia seriata, Dothiorella omnivora, Eutypa lata, Eutypella sp., Peroneutypa scoparia, and Phaeoacremonium sicilianum. Pathogenicity tests conducted under field conditions with all species using the mycelium-plug method indicated that Eutypa lata and Cadophora spp. were highly virulent to woody stems of walnut. This is the first study to detect and identify fungal trunk pathogens associated with diseased walnut trees in Europe.


1998 ◽  
Vol 88 (7) ◽  
pp. 614-620 ◽  
Author(s):  
Francisco M. Cazorla ◽  
Juan A. Torés ◽  
Laura Olalla ◽  
Alejandro Pérez-García ◽  
José M. Farré ◽  
...  

A necrotic bacterial disease of mango trees (Mangifera indica) in Spain affecting buds, leaves, and stems is described for the first time. Necrosis of flower and vegetative buds on commercial trees during winter dormancy was the most destructive symptom of the disease. The apical necrosis is caused by Pseudomonas syringae, which was always isolated from mango trees with disease symptoms. Of 95 bacterial strains isolated from symptomatic tissues and characterized from 1992 to 1997, over 90% were identified as P. syringae pv. syringae. Additional strains were isolated from healthy mango trees, and they were identical to the isolates from diseased tissues. Pathogenicity tests on mango plants showed that P. syringae pv. syringae incited the apical necrosis, but that climatic conditions determined the onset of disease development. Populations of total bacteria and of P. syringae and the number of active ice nuclei were monitored over a 3-year period. The largest populations of P. syringae were associated with cool, wet periods that coincided with the highest disease severity, whereas P. syringae was only occasionally detected on healthy trees. The median effective dose was estimated from infectivity titration assays.


2000 ◽  
Vol 10 (1) ◽  
pp. 127-130
Author(s):  
William H. Krueger

English walnut (Juglans regia, L.) is a monoecious species bearing staminate and pistillate flowers separately on the same tree. Walnuts are generally self-fruitful, cross-compatible and dichogamous, having incomplete overlap of pollen shed and female receptivity. It is this characteristic which led to the recommendation that about 10% of the trees in a commercial planting be a cultivar with a pollen shed period overlapping pistillate flower receptivity of the main cultivar. Excessive pollen load has been implicated in the `Serr' cultivar in pistillate flower abortion (PFA), the loss of the female flowers early in the season before fruit drop due to lack of pollination. PFA can be reduced and yield improved in `Serr' orchards by reducing pollen load. This can be accomplished by pollinizer removal, or catkin removal at the beginning of pollen shed by mechanical shaking. In years of significant bloom overlap between staminate and pistillate bloom, PFA can be further reduced and yield improved by removing `Serr' catkins. PFA occurs to a lesser extent in other cultivars such as `Chico', `Chandler', `Vina' and `Howard'. This information has led to the reevaluation of pollinizer recommendations. Research focused on optimum pollinizer levels in `Chandler', a cultivar of increasing importance to the California walnut industry, has been inconclusive. Lack of pollinizers may impact yields to a greater extent in the in the northern San Joaquin Valley and Sacramento Valley than in the southern San Joaquin Valley. In any case the previously recommended 10% appears to be excessive. Two to three percent is probably adequate to limit losses due to lack of pollination without resulting in excessive PFA, and is currently being recommended by extension farm advisors and specialists. Factors to consider when determining the number of pollinators to plant include: cultivar susceptibility to PFA, walnut pollen load in the area and local pollination and fruit set experiences.


Sign in / Sign up

Export Citation Format

Share Document