scholarly journals First Report of Powdery Mildew Caused by an Oidium sp. on Spiraea japonica in Italy

Plant Disease ◽  
2004 ◽  
Vol 88 (9) ◽  
pp. 1045-1045
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Spiraea japonica is an old-fashioned shrub widely grown in Italy in parks and gardens. In the summer of 2003, severe outbreaks of a previously unknown powdery mildew were observed in some parks and gardens in the city of Torino (northern Italy). Infected leaves became covered on both sides with a white mycelium. As the disease progressed, infected leaves turned reddish and eventually dropped prematurely. The presence of powdery mildew infections on leaves sometimes caused their distortion and growth reduction. Frequently, mycelium was observed also on the stem. Conidia were hyaline, ellipsoid, cylindrical, or dol iform, born in chains, measured 21.0 to 38.4 × 10.8 to 14.4 mm, and showed fibrosin bodies. Cleistothecia were not observed. The pathogen was identified as Oidium subgenus Fibroidium (1,2). Pathogenicity was confirmed by spraying leaves of healthy potted S. japonica plants with a conidial suspension (105 conidia per ml) prepared in sterile water from diseased leaves. Three plants were inoculated and three noninoculated plants served as control. The artificial inoculation was carried out twice. After artificial inoculation, plants were maintained in a growth chamber at 25°C. After 20 days, powdery mildew symptoms developed. Microsphaera alni and Podosphaera oxyacanthae were described as causal agents of powdery mildew on S. japonica in the United States (3), while Sphaerotheca spiraeae was considered the causal agent of a powdery mildew observed in Japan (4) and more recently in Poland. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (2) R. T. A. Cook et al. Mycol. Res. 101:975, 1997. (3) P. Pirone. Diseases and Pests of Ornamental Plants. John Wiley and Sons, NY, 1978. (4) K. Sawada. Rev. Appl. Mycol. 31:577, 1952.

Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 694-694 ◽  
Author(s):  
P. L. Sholberg ◽  
J. H. Ginns ◽  
T. S. C. Li

Purple coneflowers (Echinacea purpurea) are grown in North America and Europe for their medicinal properties and as ornamental plants. In September 1997 and again in 1998, a previously undescribed disease was noticed on fully grown coneflower plants in Summerland and Oliver, British Columbia. Mycelia were observed on stems, foliage, and flowers, and distinct dark red to black, round (approximately 5 mm in diameter) lesions were observed on the flower petals. The disease appeared similar to powdery mildews that have been reported on numerous genera of the Asteraceae. Samples of the diseased tissue were examined and the salient features of the fungus on two specimens were determined: cleistothecia infrequent, subglobose or flattened on the side next to the leaf surface, 121 to 209 μm in diameter; epidermal (surface) cells 20 μm in diameter; appendages hyphoid, 5 μm in diameter, up to 200 μm long; asci, 10 to 19 in each cleistothecium, broadly ellipsoid, 47 to 85 × 28 to 37 μm with a short stalk, about 8 to 13 μm long and 8 μm in diameter; ascospores, immature, two per ascus, ellipsoid to broadly ellipsoid, 17 to 25 × 11 to 13 μm, thin walled, hyaline, and smooth; conidia oblong with sides slightly convex and apices truncate, 27 to 40 × 14 to 20 μm, walls hyaline, thin, smooth. Based on the occurrence of asci that contained two ascospores and the hyphoid appendages on the cleistothecia we concluded that the fungus was Erysiphe cichoracearum DC. Damage due to this disease was minimal in 1997 and 1998 because it developed very late in the growing season and occurred sporadically within the plantings. In order to complete Koch's postulates, Echinacea purpurea plants grown in the greenhouse were inoculated with a conidial suspension (105 to 106 conidia per ml) from field-infected plants. Powdery mildew first appeared 3 months later, eventually infecting leaves and stems of 12 of 49 inoculated plants. It was distinctly white and in discrete patches on leaves, compared with coalescing dark brown areas on the stems. Microscopic examination of the conidia confirmed that they were E. cichoracearum. Although powdery mildew caused by E. cichoracearum has been widely reported on lettuce, safflower, and other cultivated and wild Compositae, we found no reference to it on Echinacea spp. in Canada (1,2), the U.S. (3), or elsewhere in the world (4). The specimens have been deposited in the National Mycological Herbarium of Canada (DAOM) with accession numbers 225933 and 225934 for Oliver and Summerland, B.C., respectively. References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) I. L. Conners. 1967. An annotated index of plant diseases in Canada and fungi recorded on plants in Alaska, Canada, and Greenland. Canada Dept. of Agric. Pub. 1251. (3) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN. (4) J. Ginns. 1986. Compendium of plant disease and decay fungi in Canada, 1960-1980. Agriculture Canada Pub. 1813.


Plant Disease ◽  
2002 ◽  
Vol 86 (8) ◽  
pp. 920-920
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
D. Bertetti ◽  
M. L. Gullino

Euryops pectinatus is grown in Italy for landscape use in parks and gardens. In 2001, severe outbreaks of a previously unknown powdery mildew were observed in commercial farms located in Albenga (northern Italy). All green parts (leaves, stems, and petioles) became covered with a white mycelium. Infections were particularly severe on the upper leaf surface. With progress of the disease, infected leaves turned yellow and died. The presence of powdery mildew infections on leaves and stems only rarely was linked to growth reduction. Conidia were hyaline, cylindric to slightly doliform, did not show fibrosin bodies, borne in chains, and measured 24 to 41 × 12 to 20 μm. Cleistothecia were not observed. The pathogen was identified as Oidium sp. subgen. Fibroidium (1). Pathogenicity was confirmed by gently pressing diseased leaves on leaves of healthy E. pectinatus plants. Inoculated plants were maintained in a growth chamber at 20 to 24°C. After 12 to 14 days, powdery mildew symptoms developed. A similar disease of E. pectinatus was observed in 1999 in California and identified as being caused by Podosphaera (Sphaerotheca) fusca (2). It is possible that the powdery mildew observed in Italy belongs to the same species, also considering that recently the two genera, Podosphaera and Sphaerotheca, have been unified in the genus Podosphaera (1). References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (2) G. S. Saenz et al. Plant Dis. 84:1048, 2000.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


Plant Disease ◽  
2005 ◽  
Vol 89 (12) ◽  
pp. 1362-1362
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Potentilla fruticosa L. (bush cinquefoil), belonging to the family Rosaceae, is an ornamental plant used in parks and gardens. During the spring and summer of 2005, severe outbreaks of a previously unknown powdery mildew were observed in several private gardens located near Biella (northern Italy). The adaxial and abaxial surfaces of leaves as well as the stems were covered with white mycelium. Buds and flowers also were affected. As disease progressed, infected leaves turned yellow and dehisced. Conidia formed in chains and were hyaline, ovoid, and measured 24.0 to 36.0 × 15.8 to 24.0 μm (average 30.1 × 20.0 μm). Fibrosin bodies were present. Chasmothecia were numerous, sphaerical, amber colored, and diameters ranged from 84.0 to 98.4 μm (average 90.4 μm). Each chasmothecium contained one ascus with eight ascospores. Ascospores measured 26.5 to 27.2 × 13.2 to 15.6 μm (average 26.8 × 14.0 μm). On the basis of its morphology, the causal agent was determined to be Podosphaera aphanis (Wallr.) U. Braun & S. Takamatsu var. aphanis U. Braun (1). Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy P. fruticosa plants. Three plants were inoculated. Three noninoculated plants served as a control. Plants were maintained at temperatures ranging from 12 to 23°C. Ten days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on P. fruticosa in Italy. Erysiphe polygoni D.C. and Sphaerotheca macularis (Wallr.:Fr.) Lind were observed in the United States on P. fruticosa (2), while in Japan, the presence of S. aphanis var aphanis was reported (3). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000 (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) S. Tanda et al. J. Agric. Sci. 39:258, 1995.


Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 1049-1049 ◽  
Author(s):  
B. de los Santos ◽  
C. Blanco ◽  
M. Porras ◽  
C. Barrau ◽  
F. Romero

In February 2001, in seven small tunnel production fields in southwestern Spain, symptoms and signs of powdery mildew were detected on strawberry (Fragaria × ananassa) cvs. Camarosa, Andana, and Carisma. On ‘Camarosa’ plants, white patches of mycelium developed on the lower leaf surface. Later, the leaf edges rolled upward, and reddish or necrotic irregular spots appeared on the lower leaf surface. Some immature fruits were abnormally hard and covered with a dense white mycelium. Symptoms were much less severe on ‘Andana’ and ‘Carisma’. Microscopic observations revealed conidia in chains, ellipsoidal to barrel-shaped, with fibrosin granules. Mean dimensions of conidia (N= 70) were 31.2 μm ± 2.8 × 20.39 μm ± 4.1. Cleistothecia were not detected. Based on these characteristics, the causal agent was identified as Sphaerotheca macularis (Wallr.:Fr.) Lind. (1). Pathogenicity was confirmed by inoculating leaves of 2-month-old potted ‘Camarosa’ plants. S. macularis obtained from field-grown plants was maintained on ‘Camarosa’ strawberry leaves in a growth chamber (20°C and 100% relative humidity). Inoculum was obtained from freshly sporulating infected leaves 11 days after inoculation. Conidia of S. macularis were gently brushed into 100-ml distilled water containing two drops of Tween 20. Ten strawberry ‘Camarosa’ plants were inoculated by misting with a conidial suspension (104 conidia per ml) (2). The plants were incubated at 100% relative humidity for 48 h in the greenhouse (15 to 25°C). Colonies of powdery mildew were observed on leaves after 18 days. To our knowledge, this is the first confirmation of S. macularis on strawberry in Spain. References: (1) K. G. Mukerji. No. 188 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, UK, 1968. (2) R. Reuveni et al. Crop Prot. 19:335, 2000.


Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1586-1586 ◽  
Author(s):  
C. S. Kousik ◽  
R. S. Donahoo ◽  
C. G. Webster ◽  
W. W. Turechek ◽  
S. T. Adkins ◽  
...  

Cucurbit powdery mildew caused by the obligate parasite Podosphaera xanthii occurs commonly on foliage, petioles, and stems of most cucurbit crops grown in the United States. (3). However, in the field, fruit infection on cucurbits including watermelon (Citrullus lanatus), is rarely, if ever, observed (2). Consequently, it was atypical when severe powdery mildew-like symptoms were observed on seedless and seeded watermelon fruit on several commercial farms in southwestern Florida during November and December 2010. Severe powdery mildew was also observed on ‘Tri-X 313’ and ‘Mickey Lee’ fruit grown at SWFREC, Immokalee, FL. Infected fruit developed poorly and were not marketable. Powdery mildew symptoms were mainly observed on young immature fruit, but not on mature older fruit. Abundant powdery mildew conidia occurred on fruit surface, but not on the leaves. Conidia were produced in chains and averaged 35 × 21 μm. Observation of conidia in 3% KOH indicated the presence of fibrosin bodies commonly found in the cucurbit powdery mildew genus Podosphaera (3). Orange-to-dark brown chasmothecia (formerly cleisthothecia) containing a single ascus were detected on the surface of some fruit samples. Conidial DNA was subjected to PCR using specific primers designed to amplify the internal transcribed spacer (ITS) region of Podosphaera (4). The resulting amplicons were sequenced and found to be 100% identical to the ITS sequences of P. xanthii in the NCBI database (D84387, EU367960, AY450961, AB040322, AB040315). Sequences from the watermelon fruit isolate were also identical to several P. fusca (synonym P. xanthii), P. phaseoli (GQ927253), and P. balsaminae (AB462803) sequences. On the basis of morphological characteristics and ITS sequence analysis, the pathogen infecting watermelon fruit can be considered as P. xanthii (1,3,4). The powdery mildew isolate from watermelon fruit was maintained on cotyledons of squash (Cucurbita pepo, ‘Early Prolific Straight Neck’). Cotyledons and leaves of five plants each of various cucurbits and beans were inoculated with 10 μl of a conidial suspension (105conidia/ml) in water (0.02% Tween 20). Two weeks after inoculation, abundant conidia were observed on cucumber (Cucumis sativus, ‘SMR-58’) and melon (Cucumis melo) powdery mildew race differentials ‘Iran H’ and ‘Vedrantais’. However, no growth was observed on melon differentials ‘PI 414723’, ‘Edisto 47’, ‘PMR 5’, ‘PMR 45’, ‘MR 1’, and ‘WMR 29’ (2,3). The powdery mildew isolate from watermelon fruit behaved as melon race 1 (3). Mycelium and conidia were also observed on fruit surface of watermelon ‘Sugar Baby’ and a susceptible U.S. plant introduction (PI 538888) 3 weeks after inoculation. However, the disease was not as severe as what was observed in the fields in fall 2010. The pathogen did not grow on plants of Impatiens balsamina or on select bean (Phaseolus vulgaris) cultivars (‘Red Kidney’, ‘Kentucky Blue’, and ‘Derby Bush’), but did grow and produce abundant conidia on ‘Pinto bush bean’. Powdery mildew on watermelon fruit in production fields can be considered as a potentially new and serious threat requiring further studies to develop management strategies. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (2) A. R. Davis et al. J. Am. Soc. Hortic. Sci. 132:790, 2007. (3) M. T. McGrath and C. E. Thomas. In: Compendium of Cucurbit Diseases. American Phytopathological Society, St. Paul, MN, 1996. (4) S. Takamatsu and Y. Kano. Mycoscience 42:135, 2001.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1114-1114 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

During the summer of 2005, plants of potato (Solanum tuberosum L.) showing severe basal rot symptoms were observed in a commercial field near Alessandria (northern Italy). The first symptoms were detected during early July in correspondence with a strong increase of air temperature (as much as 38°C, with an average monthly increase of 10°C) and relative humidity. Infected plants showed dry collar rots and extensive necrosis of cortical tissues. Leaves of infected plants were chlorotic. As the disease progressed, tubers rotted and plants wilted. Infected plants appeared in patches, encompassing 10 to 15% of the cultivated area. In the presence of abundant moisture, a white mycelium occurred on infected tissues. On their surface, infected tubers showed a fan-like mycelial growth. Later, white or light-to-dark brown sclerotia (2 to 4 mm in diameter) developed from mycelium. Clamp connections were present. The diseased tissue was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar (PDA) amended with 100 mg/liter of streptomycin sulfate. Sclerotium rolfsii was consistently isolated from infected plants. Pathogenicity of one isolate obtained from infected plants was confirmed by inoculating healthy S. tuberosum plants (cv. Hermes) grown in 2:l volume pots (1 plant per pot, seven replicates). Inoculum that consisted of 1 g/pot of wheat kernels infested with mycelium and sclerotia was placed on the soil surface. Seven noninoculated plants served as controls. The inoculation trial was repeated once. Plants were kept at temperatures ranging between 25 and 32°C and watered as needed. Inoculated plants developed symptoms of leaf yellowing within 10 days, soon followed by the appearance of white mycelium and sclerotia and then eventually wilted. Control plants remained symptomless. Sclerotium rolfsii was reisolated from inoculated plants.Possible attacks of Sclerotium rolfsii on S. tuberosum were described as rarely occurring in southern Italy (3). The disease, detected at the moment in very few farms and on cvs. Hermes and Monalisa, was particularly severe on the last variety, causing 5 to 15% yield losses because of premature plant death and rotting of tubers. This disease has been reported in several countries such as India (1), Israel (2), and the United States of America (4). References: (1) N. S. Bisht. Indian Phytopathol. 35:148, 1982. (2) Y. Elad et al. Soil Biol. Biochem. 16:381, 1984. (3) R. Gigante. Ital. Agric. 87:263, 1946. (4) G. F. Weber. Phytopathology, 33:615, 1943.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 682-682
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
D. Bertetti ◽  
M. L. Gullino

Salvia scabra Thunb. is grown and used on the Italian Riviera as a potted plant and used in gardens. During the spring of 2003, severe outbreaks of a previously unknown powdery mildew were observed in a collection of Salvia spp. maintained at an experimental station at Albenga (northern Italy). Powdery mildew was observed only on S. scabra. Leaves were covered with white exophytic mycelia on both surfaces. As the disease progressed, infected leaves turned yellow and died. Conidia were single, hyaline, cylindric, and measured 21.3 to 35.5 × 12.5 to 22.5 μm (average 28.2 × 18.4 μm). Observations made with a light microscope revealed that foot cells were cylindric and appressoria lobed. Cleistothecia were not observed. The pathogen was identified as Oidium subgenus Pseudoidium (1,2), and pathogenicity was confirmed by gently pressing diseased leaves onto mature leaves of healthy, 40-day-old S. scabra plants. Five plants of S. scabra were used as replicates. Noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a growth chamber at 20°C. After 5 days, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on S. scabra in Italy as well as in the world. Erysiphe polygoni DC. (Oidium subgenus Pseudoidium) and E. cichoracearum DC. (Oidium subgen us Reticuloidium) were previously reported as causal agents of powdery mildew on other species of Salvia (S. officinalis and S. sclarea) (3,4). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) R. Belanger et al., eds. The Powdery Mildew A Comprehensive Treatise. The American Phytopathological Society, St Paul, MN, 2002. (2) U. Braun. Nova Hedwigia. 89:700, 1987. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (4) A. Pisi and M. G. Bellardi. Inf. Fitopatol. 48(10):57, 1998.


Plant Disease ◽  
2021 ◽  
Author(s):  
Marco Rosati ◽  
Marian Bogoescu ◽  
Davide Spadaro

Romania has an area dedicated to hazelnut (Corylus avellana L.), covering 890 hectares as of 2019. During October 2020, powdery mildew symptoms were observed on the upper side of leaves of hazelnut ‘Tonda di Giffoni’ in two commercial orchards in Dudeștii Vechi, Romania (Fig. 1). The disease was present on 70% of the trees in planting, with at least 5 leaves per tree having powdery mildew. Micromorphological examination revealed amphigenous, hyaline, branched, septate mycelial patches of 2.3 to 3.6 μm in diameter. Conidiophores measured 24-60 × 5-6 (average: 45 × 6) μm and consisted of erect, cylindrical to flexuous foot cells, followed by 1-2 shorter cells. Ellipsoid, ovoid to doliform conidia were produced singly and they measured 19-35 × 16-24 (average: 28 × 19) μm. Chasmothecia were spherical, 75 to 107 (average: 88) μm in diameter. Nine to thirteen straight, sometimes flexuous, appendages measured 54 to 92 (average: 66) μm in length and they had five times dichotomous branched apices with curved tips (Fig. 2). Each chasmothecium contained three to five ellipsoid, ovoid to subglobose asci measuring 41-58 × 29-55 μm (average 52 × 43) μm. The asci contained four to eight ascospores measuring 13-24 × 11-15 (average 18 × 14) μm. Morphological identification was confirmed by sequencing the ITS-region of rDNA using two isolates from leaves, stored as frozen mycelium at -20°C. PCR was performed with Erysiphales-specific primer pair PMITS1/PMITS2 (Cunnington et al. 2003). The obtained sequences were deposited in GenBank (Accession n° MW423075, MW423076). Blast analysis of both sequences had 100% identity to ITS rDNA sequences of Erysiphe corylacearum from Azerbaijan (Abasova et al. 2018; Accession n° LC270863), Turkey (Sezer et al. 2017; KY082910), Switzerland (Beenken et al. 2020; MN82272), Iran (Arzanlou et al. 2018; MH047243), Italy (Mezzalama et al. 2020; MW045425) and 99% identity from Georgia (Meparishvili et al. 2019; MK157199). The sequences had a lower percent identity (83%) to Phyllactinia guttata (Accession n° AB080558) (Fig. 3). Pathogenicity was verified on one-year-old plants of C. avellana ‘Tonda di Giffoni’, which were artificially inoculated with a conidial suspension from infected leaves (n = 25). Inoculated plants were incubated at 20 to 28°C with 70 to 80% relative humidity. White mycelium appeared on the upper surface of the leaves at 8 to 10 days after inoculation. No symptoms were found on control plants sprayed with sterile water. The fungus present on inoculated leaves was morphologically identical to the original isolates from diseased trees from the field. E. corylacearum is native to East Asia and was previously reported in Japan on wild species of Corylus (Takamatsu et al. 2015; Accession n° LC009928). The pathogen most likely spread into Europe from east to west of Europe (Heluta et al. 2019), through the Caucasus, starting from Turkey, Azerbaijan, Georgia, and Iran. P. guttata was considered the only causal agent of powdery mildew on hazelnut in most countries, including Romania (Brown 1995). Compared to P. guttata, which generally develops a mycelium on the underside of leaves, E. corylacearum grows with a white mycelium on the upper side of the leaves. Recently, E. corylacearum on C. avellana was reported also in Ukraine (Heluta et al. 2019), from which it could have moved to Romania. Crop protection strategies for hazelnut should be revised according to the new pathogen occurrence.


Plant Disease ◽  
2004 ◽  
Vol 88 (9) ◽  
pp. 1045-1045
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Honeysuckle (Lonicera caprifolium L., family Caprifoliaceae) is a climbing shrub used in gardens to cover walls and supports. During the summer of 2003, severe outbreaks of a previously unknown powdery mildew were observed on this species in some gardens near Biella (northern Italy). The first symptoms included extensive chlorosis on leaves, followed by the appearance of white mycelium on the adaxial and abaxial leaf surfaces. As the disease progressed, infected leaves turned yellow and died. Conidia were hyaline, ellipsoidal, and measured 27.6 to 43.2 × 12.2 to 21.6 μm (average 35.7 × 17.6 μm). Foot cells were cylindric and appressoria lobed. Fibrosin bodies were not present. Cleistothecia were not observed during the growing season. The pathogen was identified as Oidium subgenus Pseudoidium (2). The inoculation procedure involved gently pressing diseased leaves onto leaves of healthy L. caprifolium plants. Three plants of L. caprifolium were used as replicates. Noninoculated plants served as control. Inoculated and noninoculated plants were maintained in a garden at temperatures ranging from 15 to 25°C. After 10 days, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of powdery mildew on L. caprifolium in Italy. The presence of powdery mildew on different species of Lonicera has been reported in several countries, particularly, Microsphaera miurae U. Braun on L. morowii A. Gray in Germany (1), M. lonicerae (DC.) Winter on L. peryclimenum L. in England (3), and M. lonicerae-ramosissimae on L. ramosissima Fr. & Sav. in Japan (4). The conidia of M. lonicerae are smaller than those of the Oidium sp. reported on L. caprifolium. Voucher specimens are available at DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Mycotaxon 16:417, 1983. (2) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (3) J. Robbins. Cecidology 15:15, 2000. (4) S. Tanda. Mycoscience 41:155, 2000.


Sign in / Sign up

Export Citation Format

Share Document