epidermal surface
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Fernando Baquero ◽  
Claudia Saralegui ◽  
Daniel Marcos-Mencía ◽  
Luna Ballestero ◽  
Sergio Vañó-Galván ◽  
...  

The epidermis constitutes a continuous external layer covering the body, offering protection against bacteria, the most abundant living organisms that come into contact with this barrier. The epidermis is heavily colonized by commensal bacterial organisms that help protect against pathogenic bacteria. The highly regulated and dynamic interaction between the epidermis and commensals involves the host’s production of nutritional factors promoting bacterial growth together to chemical and immunological bacterial inhibitors. Signal trafficking ensures the system’s homeostasis; conditions that favor colonization by pathogens frequently foster commensal growth, thereby increasing the bacterial population size and inducing the skin’s antibacterial response, eliminating the pathogens and re-establishing the normal density of commensals. The microecological conditions of the epidermis favors Gram-positive organisms and are unsuitable for long-term Gram-negative colonization. However, the epidermis acts as the most important host-to-host transmission platform for bacteria, including those that colonize human mucous membranes. Bacteria are frequently shared by relatives, partners, and coworkers. The epidermal bacterial transmission platform of healthcare workers and visitors can contaminate hospitalized patients, eventually contributing to cross-infections. Epidermal transmission occurs mostly via the hands and particularly through fingers. The three-dimensional physical structure of the epidermis, particularly the fingertips, which have frictional ridges, multiplies the possibilities for bacterial adhesion and release. Research into the biology of bacterial transmission via the hands is still in its infancy; however, tribology, the science of interacting surfaces in relative motion, including friction, wear and lubrication, will certainly be an important part of it. Experiments on finger-to-finger transmission of microorganisms have shown significant interindividual differences in the ability to transmit microorganisms, presumably due to genetics, age, sex, and the gland density, which determines the physical, chemical, adhesive, nutritional, and immunological status of the epidermal surface. These studies are needed to optimize interventions and strategies for preventing the hand transmission of microorganisms.


2021 ◽  
Vol 22 (23) ◽  
pp. 12711
Author(s):  
Izabela Potocka ◽  
Joanna Szymanowska-Pułka

In grasses, the apical part of the root is covered by a two-layered deposit of extracellular material, the pellicle, which together with the outer periclinal wall of protodermal cells forms the three-layered epidermal surface. In this study, the effect of mechanical stress on the pellicle was examined. An experiment was performed, in which maize roots were grown in narrow diameter plastic tubes with conical endings for 24 h. Two groups of experimental roots were included in the analysis: stressed (S) roots, whose tips did not grow out of the tubes, and recovering (R) roots, whose apices grew out of the tube. Control (C) roots grew freely between the layers of moist filter paper. Scanning electron microscopy and confocal microscopy analysis revealed microdamage in all the layers of the epidermal surface of S roots, however, protodermal cells in the meristematic zone remained viable. The outermost pellicle layer was twice as thick as in C roots. In R roots, large areas of dead cells were observed between the meristematic zone and the transition zone. The pellicle was defective with a discontinuous and irregular outermost layer. In the meristematic zone the pellicle was undamaged and the protodermal cells were intact. The results lead to the conclusion that the pellicle may prevent damage to protodermal cells, thus protecting the root apical meristem from the negative effects of mechano-stress.


2021 ◽  
Vol 91-92 ◽  
pp. 24-35
Author(s):  
Olena Nedukha

The results of the study of the leaf structure in psammophyte Corynephorus canescens, which grew under controlled conditions and flooding using the methods of light microscopy, scanning electron microscopy, and laser confocal microscopy, are presented. This study revealed common and distinctive signs of morphological and anatomical parameters of C. canescens leaves in the phase of vegetative growth. Among the common features were the shape and size of the leaf laminas, hypostomatic type of the leaf, isolateral structure of the parenchyma, the thick-walled epidermis, and the bilayered hypodermis. Among the distinctive features were the signs of the destruction of cells in the photosynthetic parenchyma, change in their shape with the formation of protuberances at the cells’ poles, and almost doubling area of the aerenchyma in C. canescens leaves under flooding conditions. Scanning electron microscopy showed the similarity of ultrastructure and density of trichomes on the adaxial surface, excepting the formation of cuticular wax structures on the epidermal surface of the leaves in flooded plants. The subcellular localization of silicon inclusions was studied for the first time. The presence of amorphous and small crystalline silicon inclusions in the periclinal walls of the main epidermal cells and amorphous silicon inclusions in leaf trichomes was established. An increase in the relative silicon content along the trichomes in the leaves’ epidermis after flooding was revealed. It was assumed that the phenotypic plasticity of C. canescens, is realized through the increasing area of aerenchyma in leaves and increasing silicon content in trichomes. Such plasticity helps to optimize both the oxygen balance of plants and water balance in flooded plants, thus increasing the species’ resistance to prolonged flooding.


2021 ◽  
pp. 088532822110119
Author(s):  
Micael Montemezzo ◽  
Micaela Dani Ferrari ◽  
Estela kerstner ◽  
Venina dos Santos ◽  
Vincius Victorazzi Lain ◽  
...  

Given the global panorama of demands in the health area, the development of biomaterials becomes irreducible for the maintenance and/or improvement in the quality of life of the human being. Aiming to reduce the impacts related to infections in the healing processes of the dermal structure, the present work proposes the development of polydimethylsiloxane (PDMS) based membranes with the incorporated polyhexamethylenebiguanide (PHMB) antimicrobial agent. In the present study, the antimicrobial and antibiofilm properties of polydimethylsiloxane (PDMS) films incorporated with 0.1, 0.3, and 0.5% (w/w) of polyhexamethylene biguanide (PHMB) were evaluated, aiming the development of a protective biomaterial that avoids cutaneous infections from the autochthonous and allochthonous microbiota. The disk diffusion of PHMB-loaded PDMS has shown the growth inhibition of Escherichia coli (ATCC 9637), Pseudomonas aeruginosa (ATCC 27953), Acinetobacter baumannii (ATCC 19606), Staphylococcus aureus (ATCC 6538), Staphylococcus epidermidis (ATCC 12228), Streptococcus pyogenes (ATCC 19615), Bacillus subtilis (ATCC 6633) and also yeast-like fungi Candida albicans, all microorganisms found on the epidermal surface. Likewise, the present study demonstrated low cytotoxicity of the PHMB-loaded PDMS on HaCaT and L929 cells at lower concentrations (0.1% w/w), indicating the possibility of using the developed material as a dressing for wounds, burns, and post-surgical procedures.


2021 ◽  
Vol 8 (3) ◽  
pp. 34
Author(s):  
Fardin Khalili ◽  
Peshala T. Gamage ◽  
Amirtahà Taebi ◽  
Mark E. Johnson ◽  
Randal B. Roberts ◽  
...  

For the early detection of atherosclerosis, it is imperative to explore the capabilities of new, effective noninvasive diagnosis techniques to significantly reduce the associated treatment costs and mortality rates. In this study, a multifaceted comprehensive approach involving advanced computational fluid dynamics combined with signal processing techniques was exploited to investigate the highly turbulent fluctuating flow through arterial stenosis. The focus was on localizing high-energy mechano-acoustic source potential to transmit to the epidermal surface. The flow analysis results showed the existence of turbulent pressure fluctuations inside the stenosis and in the post-stenotic region. After analyzing the turbulent kinetic energy and pressure fluctuations on the flow centerline and the vessel wall, the point of maximum excitation in the flow was observed around two diameters downstream of the stenosis within the fluctuating zone. It was also found that the concentration of pressure fluctuation closer to the wall was higher inside the stenosis compared to the post-stenotic region. Additionally, the visualization of the most energetic proper orthogonal decomposition (POD) mode and spectral decomposition of the flow indicated that the break frequencies ranged from 80 to 220 Hz and were correlated to the eddies generated within these regions.


2021 ◽  
Vol 26 (2) ◽  
pp. 2489-2498
Author(s):  
CEZAR BAHRIM ◽  
◽  
FRANCISCO JOSÉ GARCÍA–BREIJO ◽  
MARIA APOSTOL ◽  
ADRIAN CONSTANTIN ASĂNICĂ ◽  
...  

Three species of Eremurus M. Bieb. grown at UASVM Iasi, Romania, were studied: E. himalaicus Baker, E. robustus Regel and E. stenophyllus (BOISS. & BUHSE) Bak. Some ornamental (morphologic and phenologic) features were analyzed and also the anatomic structure of the leaf, the content of photosynthetic pigments and the enzymatic activity of the leaves. The biometrical and phenological determinations indicate a good ecological adaptability of the plants, in accordance with similar reports. The anatomical differences between the three species are not very great, but the stomata in E. stenophillus and E. himalaicus are arranged at the same level as the epidermal surface while in E. robustus they are arranged a little lower, and the assimilating parenchyma layer is more developed in E. stenophillus and E. himalaicus than in E. robustus. At E. robustus and E. himalaicus a larger content of assimilatory pigments and a more reduced enzymatic activity were observed.


2020 ◽  
Vol 110 (11) ◽  
pp. 1791-1801 ◽  
Author(s):  
María A. Favaro ◽  
María C. Molina ◽  
Roxana A. Roeschlin ◽  
José Gadea ◽  
Norberto Gariglio ◽  
...  

‘Okitsu’ is a mandarin cultivar showing substantial resistance to X. citri subsp. citri (X. citri). We have previously shown that this cultivar has significantly lower canker incidence and severity than ‘Clemenules’, particularly during early stages of leaf development in the field. This differential response is only seen when the leaves are inoculated by spraying, suggesting that leaf surface contributes to resistance. In this work, we have studied structural and chemical properties of leaf surface barriers of both cultivars. Ultrastructural analysis showed a thicker cuticle covering epidermal surface and guard cells in young ‘Okitsu’ leaves than in ‘Clemenules’. This thicker cuticle was associated with a smaller stomatal aperture and reduced cuticle permeability. These findings correlated with an accumulation of cuticular wax components, including primary alcohols, alkanes, and fatty acids. None of these differences were observed in mature leaves, where both cultivars are equally resistant to the bacterium. Remarkably, mechanical alteration of cuticular thickness of young ‘Okitsu’ leaves allows canker development. Furthermore, cuticular waxes extracted from young ‘Okitsu’ leaves have higher antibacterial activity against X. citri than ‘Clemenules’. Taken together, these data suggest that a faster development of epicuticular waxes in ‘Okitsu’ leaves play a central role in its resistance to X. citri.


2020 ◽  
Vol 27 (1) ◽  
pp. 15-26
Author(s):  
Faria Akbar ◽  
Kazi Nahida Begum

In the present study, micromorphology and comparative anatomy of young root, stem and leaf of three economically important taxa of Brassica L. viz., B. rapa L. subsp. campestris (L.) Clapham, B. juncea (L.) Czern. and B. napus L. are investigated in detail for the first time in Bangladesh by using light microscopy (LM). In anatomical studies, cross sections of young root, stem and leaf have been examined and biometric measurement of cell and tissues are presented. The micromorphological studies are related to the epidermal surface. In addition, the stomatal index and stomatal index ratio of these taxa have been calculated and presence of simple, non-glandular, unicellular trichome on stems and leaves also been observed except on the stem of B. rapa L. subsp. campestris (L.) Clapham. The anatomical study reveals that the investigated taxa have primary growth in roots and stems as well as amphistomatic and bifacial leaves with anisocytic stomata have been noticed. Finally, presence of tetrarch or single strand exarch xylem in vascular bundle of root, the size, shape and presence or absence of trichome over stem, shape of midrib of leaf have been considered to provide reliable features for identification of the Brassica species. Bangladesh J. Plant Taxon. 27(1): 15-26, 2020 (June)


2020 ◽  
Vol 32 (24) ◽  
pp. 2001130 ◽  
Author(s):  
Ke He ◽  
Zhiyuan Liu ◽  
Changjin Wan ◽  
Ying Jiang ◽  
Ting Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document