scholarly journals First Report of Powdery Mildew, Caused by Erysiphe cichoracearum, on Coneflowers

Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 694-694 ◽  
Author(s):  
P. L. Sholberg ◽  
J. H. Ginns ◽  
T. S. C. Li

Purple coneflowers (Echinacea purpurea) are grown in North America and Europe for their medicinal properties and as ornamental plants. In September 1997 and again in 1998, a previously undescribed disease was noticed on fully grown coneflower plants in Summerland and Oliver, British Columbia. Mycelia were observed on stems, foliage, and flowers, and distinct dark red to black, round (approximately 5 mm in diameter) lesions were observed on the flower petals. The disease appeared similar to powdery mildews that have been reported on numerous genera of the Asteraceae. Samples of the diseased tissue were examined and the salient features of the fungus on two specimens were determined: cleistothecia infrequent, subglobose or flattened on the side next to the leaf surface, 121 to 209 μm in diameter; epidermal (surface) cells 20 μm in diameter; appendages hyphoid, 5 μm in diameter, up to 200 μm long; asci, 10 to 19 in each cleistothecium, broadly ellipsoid, 47 to 85 × 28 to 37 μm with a short stalk, about 8 to 13 μm long and 8 μm in diameter; ascospores, immature, two per ascus, ellipsoid to broadly ellipsoid, 17 to 25 × 11 to 13 μm, thin walled, hyaline, and smooth; conidia oblong with sides slightly convex and apices truncate, 27 to 40 × 14 to 20 μm, walls hyaline, thin, smooth. Based on the occurrence of asci that contained two ascospores and the hyphoid appendages on the cleistothecia we concluded that the fungus was Erysiphe cichoracearum DC. Damage due to this disease was minimal in 1997 and 1998 because it developed very late in the growing season and occurred sporadically within the plantings. In order to complete Koch's postulates, Echinacea purpurea plants grown in the greenhouse were inoculated with a conidial suspension (105 to 106 conidia per ml) from field-infected plants. Powdery mildew first appeared 3 months later, eventually infecting leaves and stems of 12 of 49 inoculated plants. It was distinctly white and in discrete patches on leaves, compared with coalescing dark brown areas on the stems. Microscopic examination of the conidia confirmed that they were E. cichoracearum. Although powdery mildew caused by E. cichoracearum has been widely reported on lettuce, safflower, and other cultivated and wild Compositae, we found no reference to it on Echinacea spp. in Canada (1,2), the U.S. (3), or elsewhere in the world (4). The specimens have been deposited in the National Mycological Herbarium of Canada (DAOM) with accession numbers 225933 and 225934 for Oliver and Summerland, B.C., respectively. References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) I. L. Conners. 1967. An annotated index of plant diseases in Canada and fungi recorded on plants in Alaska, Canada, and Greenland. Canada Dept. of Agric. Pub. 1251. (3) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN. (4) J. Ginns. 1986. Compendium of plant disease and decay fungi in Canada, 1960-1980. Agriculture Canada Pub. 1813.

Plant Disease ◽  
2004 ◽  
Vol 88 (9) ◽  
pp. 1045-1045
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Spiraea japonica is an old-fashioned shrub widely grown in Italy in parks and gardens. In the summer of 2003, severe outbreaks of a previously unknown powdery mildew were observed in some parks and gardens in the city of Torino (northern Italy). Infected leaves became covered on both sides with a white mycelium. As the disease progressed, infected leaves turned reddish and eventually dropped prematurely. The presence of powdery mildew infections on leaves sometimes caused their distortion and growth reduction. Frequently, mycelium was observed also on the stem. Conidia were hyaline, ellipsoid, cylindrical, or dol iform, born in chains, measured 21.0 to 38.4 × 10.8 to 14.4 mm, and showed fibrosin bodies. Cleistothecia were not observed. The pathogen was identified as Oidium subgenus Fibroidium (1,2). Pathogenicity was confirmed by spraying leaves of healthy potted S. japonica plants with a conidial suspension (105 conidia per ml) prepared in sterile water from diseased leaves. Three plants were inoculated and three noninoculated plants served as control. The artificial inoculation was carried out twice. After artificial inoculation, plants were maintained in a growth chamber at 25°C. After 20 days, powdery mildew symptoms developed. Microsphaera alni and Podosphaera oxyacanthae were described as causal agents of powdery mildew on S. japonica in the United States (3), while Sphaerotheca spiraeae was considered the causal agent of a powdery mildew observed in Japan (4) and more recently in Poland. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (2) R. T. A. Cook et al. Mycol. Res. 101:975, 1997. (3) P. Pirone. Diseases and Pests of Ornamental Plants. John Wiley and Sons, NY, 1978. (4) K. Sawada. Rev. Appl. Mycol. 31:577, 1952.


Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 198-198
Author(s):  
C. Nali

A powdery mildew disease of variegated ivy (Hedera canariensis L. var. azorica) was observed on the Tyrrhenian coast in Tuscany (Italy) in spring 1998. Symptoms began as small, nearly circular reddish spots that later enlarged and coalesced. The hyaline mycelium produced abundant, ellipsoid conidia in long chains that ranged from 20 to 40 μm in length and from 12 to 25 μm in width. Cleistothecia were globose (100 to 120 μm diameter), dark brown (when mature) with a basal ring of mycelioid appendages, and contained several (up to 20) ovate asci, each generally containing two ascospores. Ascospores were hyaline, one-celled, ellipsoid (20 to 35 μm in length and 10 to 20 μm in width). The morphological characteristics of this fungus were those given for Erysiphe cichoracearum DC. Infection also was found on English ivy (Hedera helix L.). It is reported that this species is, occasionally, subject to powdery mildew caused by E. cichoracearum (1). Conidia from infected leaves were shaken onto leaves of melon (Cucumis melo L.), cucumber (Cucumis sativus L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai), lettuce (Lactuca sativa L.), tomato (Lycopersicon esculentum Mill.), tobacco (Nicotiana tabacum L.) and variegated and English ivy. After 7 days, the disease was observed on cucumber, melon, watermelon, tobacco, and variegated ivy. Examination confirmed that test plants were infected with E. cichoracearum. This is the first report of E. cichoracearum on variegated ivy in Italy. Reference: (1) P. P. Pirone. 1970. Diseases and Pests of Ornamental Plants. The Ronald Press, New York.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 772-772 ◽  
Author(s):  
J. A. Mangandi ◽  
T. E. Seijo ◽  
N. A. Peres

The genus Salvia includes at least 900 species distributed worldwide. Wild species are found in South America, southern Europe, northern Africa, and North America. Salvia, commonly referred to as sage, is grown commercially as a landscape plant. In August 2006, pale-to-dark brown, circular leaf spots 5 to 20 mm in diameter with concentric rings were observed on Salvia farinacea ‘Victoria Blue’. Approximately 5% of the plants in a central Florida nursery were affected. Lesions were visible on both leaf surfaces, and black sporodochia with white, marginal hyphal tuffs were present mostly on the lower surface in older lesions. Symptoms were consistent with those of Myrothecium leaf spot described on other ornamentals such as gardenia, begonia, and New Guinea impatiens (4). Isolations from lesions on potato dextrose agar produced white, floccose colonies with sporodochia in dark green-to-black concentric rings. Conidia were hyaline and cylindrical with rounded ends and averaged 7.4 × 2.0 μm. All characteristics were consistent with the description of Myrothecium roridum Tode ex Fr. (2,3). The internal transcribed spacer regions ITS1, ITS2, and the 5.8s rRNA genomic region of one isolate were sequenced (Accession No. EF151002) and compared with sequences in the National Center for Biotechnology Information (NCBI) database. Deposited sequences from M. roridum were 96.3 to 98.8% homologous to the isolate from salvia. To confirm pathogenicity, three salvia plants were inoculated by spraying with a conidial suspension of M. roridum (1 × 105 conidia per ml). Plants were covered with plastic bags and incubated in a growth chamber at 28°C for 7 days. Three plants were sprayed with sterile, distilled water as a control and incubated similarly. The symptoms described above were observed in all inoculated plants after 7 days, while control plants remained symptomless. M. roridum was reisolated consistently from symptomatic tissue. There are more than 150 hosts of M. roridum, including one report on Salvia spp. in Brunei (1). To our knowledge, this is the first report of Myrothecium leaf spot caused by M. roridum on Salvia spp. in the United States. Even the moderate level disease present caused damage to the foliage and reduced the marketability of salvia plants. Therefore, control measures may need to be implemented for production of this species in ornamental nurseries. References: (1) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory. Online publication. ARS, USDA, 2006, (2) M. B. Ellis. Page 449 in: Microfungi on Land Plants: An Identification Handbook. Macmillan Publishing, NY, 1985. (3) M. Fitton and P. Holliday. No. 253 in: CMI Descriptions of Pathogenic Fungi and Bacteria. The Eastern Press Ltd. Great Britain, 1970. (4) M. G. Daughtrey et al. Page 19 in: Compendium of Flowering Potted Plant Diseases. The American Phytopathological Society. St. Paul, MN, 1995.


Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1586-1586 ◽  
Author(s):  
C. S. Kousik ◽  
R. S. Donahoo ◽  
C. G. Webster ◽  
W. W. Turechek ◽  
S. T. Adkins ◽  
...  

Cucurbit powdery mildew caused by the obligate parasite Podosphaera xanthii occurs commonly on foliage, petioles, and stems of most cucurbit crops grown in the United States. (3). However, in the field, fruit infection on cucurbits including watermelon (Citrullus lanatus), is rarely, if ever, observed (2). Consequently, it was atypical when severe powdery mildew-like symptoms were observed on seedless and seeded watermelon fruit on several commercial farms in southwestern Florida during November and December 2010. Severe powdery mildew was also observed on ‘Tri-X 313’ and ‘Mickey Lee’ fruit grown at SWFREC, Immokalee, FL. Infected fruit developed poorly and were not marketable. Powdery mildew symptoms were mainly observed on young immature fruit, but not on mature older fruit. Abundant powdery mildew conidia occurred on fruit surface, but not on the leaves. Conidia were produced in chains and averaged 35 × 21 μm. Observation of conidia in 3% KOH indicated the presence of fibrosin bodies commonly found in the cucurbit powdery mildew genus Podosphaera (3). Orange-to-dark brown chasmothecia (formerly cleisthothecia) containing a single ascus were detected on the surface of some fruit samples. Conidial DNA was subjected to PCR using specific primers designed to amplify the internal transcribed spacer (ITS) region of Podosphaera (4). The resulting amplicons were sequenced and found to be 100% identical to the ITS sequences of P. xanthii in the NCBI database (D84387, EU367960, AY450961, AB040322, AB040315). Sequences from the watermelon fruit isolate were also identical to several P. fusca (synonym P. xanthii), P. phaseoli (GQ927253), and P. balsaminae (AB462803) sequences. On the basis of morphological characteristics and ITS sequence analysis, the pathogen infecting watermelon fruit can be considered as P. xanthii (1,3,4). The powdery mildew isolate from watermelon fruit was maintained on cotyledons of squash (Cucurbita pepo, ‘Early Prolific Straight Neck’). Cotyledons and leaves of five plants each of various cucurbits and beans were inoculated with 10 μl of a conidial suspension (105conidia/ml) in water (0.02% Tween 20). Two weeks after inoculation, abundant conidia were observed on cucumber (Cucumis sativus, ‘SMR-58’) and melon (Cucumis melo) powdery mildew race differentials ‘Iran H’ and ‘Vedrantais’. However, no growth was observed on melon differentials ‘PI 414723’, ‘Edisto 47’, ‘PMR 5’, ‘PMR 45’, ‘MR 1’, and ‘WMR 29’ (2,3). The powdery mildew isolate from watermelon fruit behaved as melon race 1 (3). Mycelium and conidia were also observed on fruit surface of watermelon ‘Sugar Baby’ and a susceptible U.S. plant introduction (PI 538888) 3 weeks after inoculation. However, the disease was not as severe as what was observed in the fields in fall 2010. The pathogen did not grow on plants of Impatiens balsamina or on select bean (Phaseolus vulgaris) cultivars (‘Red Kidney’, ‘Kentucky Blue’, and ‘Derby Bush’), but did grow and produce abundant conidia on ‘Pinto bush bean’. Powdery mildew on watermelon fruit in production fields can be considered as a potentially new and serious threat requiring further studies to develop management strategies. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (2) A. R. Davis et al. J. Am. Soc. Hortic. Sci. 132:790, 2007. (3) M. T. McGrath and C. E. Thomas. In: Compendium of Cucurbit Diseases. American Phytopathological Society, St. Paul, MN, 1996. (4) S. Takamatsu and Y. Kano. Mycoscience 42:135, 2001.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 130-130 ◽  
Author(s):  
M. Troisi ◽  
D. Bertetti ◽  
A. Garibaldi ◽  
M. L. Gullino

Gerbera (Gerbera jamesonii) is one of the top 10 economically important flower crops in Europe as well as the United States. The acreage devoted to this crop continues to increase especially for use in landscape typologies. Abundant flowering from spring until autumn allows the use of this plant to decorate gardens, terraces, and borders. During the summer of 2009, an outbreak of a previously unknown powdery mildew was observed on potted gerbera ‘Mini Yellow’ growing in a private garden in Turin (northern Italy). Adaxial leaf surfaces were covered with white mycelium and conidia, and as the disease progressed, infected leaves turned yellow and died. Conidia were hyaline, ellipsoid, borne in chains (three conidia per chain), and measured 16 to 45 × 10 to 30 μm. Conidiophores measured 109 to 117 × 11 to 13 μm and had a foot cell measuring 72 to 80 × 11 to 12 μm followed by two shorter cells measuring 19 to 29 × 11 to 14 and 20 to 32 × 12 to 14 μm. Fibrosin bodies were absent and chasmothecia were not observed in the collected samples. On the basis of its morphology, the pathogen was identified as Golovinomyces cichoracearum. The internal transcribed spacer (ITS) region of rDNA was amplified with primers ITS1/ITS4 and sequenced. BLASTn analysis of the 548-bp fragment showed an E-value of 0.0 and a percentage homology of 99% with G. cichoracearum isolated from Coreopsis leavenworthii (Accession No. DQ871605) confirming diagnosis inferred by morphological analysis. The nucleotide sequence has been assigned GenBank Accession No. GQ870342. Pathogenicity was confirmed through inoculation by gently pressing diseased leaves onto leaves of three healthy potted plants of Gerbera ‘Mini Yellow’. Three noninoculated plants served as the control. Plants were maintained in a greenhouse at temperatures ranging between 20 and 30°C. Inoculated plants developed signs and symptoms after 8 days, whereas control plants remained healthy. The fungus present on inoculated plants was morphologically identical to that originally observed on diseased plants. To our knowledge, this is the first report of the presence of powdery mildew caused by G. cichoracearum on gerbera in Italy. Specimens are available at the Agroinnova Collection at the University of Torino. Gerbera is also susceptible to different powdery mildews. Powdery mildew of Gerbera jamesonii caused by Sphaerotheca fusca was reported in Italy (4). G. cichoracearum on Gerbera jamesonii was reported in North America (2), Argentina (3), and Switzerland (1). References: (1) A. Bolay. Cryptogam. Helv. 20:1, 2005. (2) M. Daughtrey et al. Page 39 in: Compendium of Flowering Potted Plant Diseases. The American Phytopathological Society, St Paul, MN, 1995. (3) R. Delhey et al. Schlechtendalia 10:79, 2003. (4) F. Zaccaria et al. Ann. Fac. Agrar. Univ. Stud. di Napoli Federico II 34:44, 2000.


2009 ◽  
Vol 35 (4) ◽  
pp. 322-324 ◽  
Author(s):  
Mônica Jasper ◽  
Maristella Dalla Pria ◽  
Andressa Andrade e Silva

Gerbera (Gerbera jamesonii) is one of the most popular ornamental plants in the world, used as cut or vase flower. The experiment aimed to evaluate the effect of milk in natura to control powdery mildew (Erysiphe cichoracearum) on gerbera. The treatments tested were: two concentrations of cow's milk in natura (8 and 16%), with and without adjuvant (vegetal oil), three fungicides (fenarimol -6 g a.i.100 L-1 H2O, chlorothalonil -150 g a.i.100 L-1 H2O and azoxystrobin + mineral oil - 10 g a.i.100 L-1 H2O) and control treatment. The area under the disease progress curve (AUDPC) was calculated for each plot based on disease severity. Milk in natura applied with adjuvant controlled the disease and did not allow the infection and development of pathogen. The addition of adjuvant improves the efficiency of milk in natura, but it requires subsequent washing of plants with H2O + detergent. The fungicide fenarimol promoted the best control and also the best gerbera visual aspect. The fungicide azoxystrobin + mineral oil and the chlorothalonil were phytotoxic to gerbera plants, affecting the aspect of leaves and flowers.


Plant Disease ◽  
2005 ◽  
Vol 89 (8) ◽  
pp. 911-911 ◽  
Author(s):  
M. Madia ◽  
S. Gaetán

Common sage, Salvia officinalis L., is produced primarily in greenhouses for the culinary herb market in Argentina. Since 2003 during autumn and winter, powdery mildew symptoms have been repeatedly observed on potted common sage plants in commercial greenhouses located on the outskirts of Buenos Aires. The average disease incidence during this period was 85 to 90%. Circular, white, powdery patches developed on leaf surfaces and stems. Heavily infected leaves turned brown and died. Hyaline mycelium and nonlobed appressoria were observed. Conidiophores were simple with straight foot cells measuring 53.0 to 80.0 × 10.0 to 12.3 μm. Conidia were aseptate, hyaline, cylindrical to ovoid, measured 33.0 to 40.5 × 15.0 to 18.5 μm, did not contain fibrosine bodies, and were produced in chains. Cleistothecia were not observed. The pathogen was identified as Erysiphe cichoracearum DC (1). Pathogenicity was confirmed by gently pressing leaves displaying abundant sporulation onto the adaxial surface of healthy leaves. After 10 to 12 days, typical signs and symptoms of powdery mildew appeared on all inoculated plants. Pathogenicity tests were conducted in a greenhouse at 20 to 23°C and included 10 sage plants (five inoculated and five noninoculated). The experiment was performed twice, each time with the same result. Control plants did not show any signs or symptoms. E. cichoracearum DC was previously reported in the United States on Salvia sp. (2).To our knowledge, this is the first report of an outbreak of powdery mildew caused by E. cichoracearun on potted common sage plants produced in greenhouses in Argentina. References: (1) H. J. Boesewinkel. Rev. Mycol. Tome 41:493, 1977. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2021 ◽  
Author(s):  
In-Young Choi ◽  
Ho-Jong Ju ◽  
Kui-Jae Lee ◽  
Hyeon-Dong Shin

Salvia farinacea Benth. (Lamiaceae) is an herbaceous perennial plant, native to Mexico and southern parts of the United States. This plant is cultivated worldwide for its ornamental value. In November 2019, hundreds of S. farinacea ‘Blue Bedder” grown in a flower garden in Jeju (33°30'57"N 126°32'50"E), Korea have been found to be infected with a powdery mildew fungus. The disease severity was estimated to be 100%. Likewise in October 2020, a similar situation with this plant was also observed in a flower garden in Seoul (37°35'19"N 127°01'07"E), Korea. Leaves, stems and inflorescence of plants were covered by white, thin mycelial felt, bearing an abundance of conidiophores and conidia. Eventually, infected plants lose their ornamental value. Two voucher specimens have been deposited in the Korea University Herbarium (KUS-F31478 and F32164). Fresh materials were examined. Hyphal appressoria were nipple-shaped, but rarely found. Conidiophores (n = 30) were straight, 95 to 160 × 10 to 12 μm and produced 2 to 7 immature conidia in chains with a crenate outline. Foot-cells were cylindric and 36 to 60 μm long. Conidia (n = 30) were ellipsoid-ovoid to barrel-shaped, 32 to 38 × 18 to 24 μm, and contained conspicuous fibrosin bodies. Dark brown chasmothecia were found partly embedded in the mycelial felt on leaves, mostly hypophyllous, spherical, and 82 to 100 µm diameter, with a single ascus in each. Appendages were few, mycelioid, 1- to 4-septate, brown near the base when mature, but paler above. Asci were broadly ellipsoid to subglobose, 56 to 68 × 50 to 62 μm, sessile and 8-spored. Ascospores were colorless, oval to subglobose, and 14 to 18 × 12 to 15 µm. These characteristics were consistent with those of Podosphaera xanthii (Castagne) U. Braun & Shishkoff (Braun and Cook 2012). For further confirmation, genomic DNA was extracted from chasmothecia from KUS-F31478 and F32164. PCR amplification was performed using the primer pair ITS1F/PM6 for internal transcribed spacer (ITS) and PM3/TW14 for the large subunit (LSU) of the rDNA (Takamatsu and Kano 2001). Obtained sequences were deposited to the GenBank under the accession numbers MZ359847 and MZ359859 for ITS, MZ359858 and MZ359861 for LSU. For ITS regions 99.80-100% similarity was found with sequences MT131256 (Salvia farinacea), MT131254 (Mazus pumilus) and MT131252 (Erigeron bellioides) of P. xanthii, whereas it was 99.90% with sequences of this fungus on Echinacea purpurea (MT826247 and MT826245) for 28S rDNA gene. Pathogenicity tests were carried out by touching an infected leaf onto healthy leaves of disease-free 30 days old potted ‘Blue Bedder’ using replication of five plants, with five non-inoculated plants used as controls. The typical signs of powdery mildew started to develop on the inoculated leaves in 7 to 10 days, and microscopic examination revealed the morphological identity with the fungus observed from the field. All non-inoculated control plants remained symptomless. Hitherto Golovinomyces powdery mildews on Salvia spp. were reported globally (Farr and Rossman 2021). However, Podosphaera elsholtziae on Salvia sp. and P. xanthii on S. farinacea were reported from China and Taiwan (Zheng and Yu 1987, Yeh et al. 2021). To our knowledge, this is the first report of P. xanthii on S. farinacea in Korea. The occurrence of Podosphaera powdery mildew on S. farinacea could pose a serious threat to the beauty of this plant, causing premature senescence of young leaves and gray to purplish discoloration of the leaves.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 827-827 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Euphorbia pulcherrima (poinsettia) is a winter-flowering plant grown primarily for Christmas sales. During the fall of 2005, severe outbreaks of a previously unknown powdery mildew were observed on cv. Gala in a commercial greenhouse located in Albenga (northern Italy). The abaxial surfaces of green leaves were irregularly covered with white mycelia and conidia, while the adaxial surfaces only showed slight chlorotic round lesions. As the disease progressed, mycelium turned from rose to reddish. Symptoms and signs were never observed on red bracts. Conidia were clavate (55 to 95 × 20 to 40 μm, average 70 × 23 μm) and borne singly on conidiophores that emerged through stomata. On the basis of host, morphological characteristics, and microscopic observations of the intercellular colonization of mesophyll cells, the pathogen was identified as a species of Oidiopsis. Although chasmothecia were not observed, the causal agent based on the literature is believed to be Leveillula clavata Nour (2). Pathogenicity was confirmed by inoculating young leaves of three 4-month-old E. pulcherrima plants, cv. Gala, with a conidial suspension (3 × 105 conidia/ml). Three noninoculated plants sprayed with deionized water served as control. After inoculation, plants were maintained in a growth chamber at 18°C with relative humidity ranging from 56 to 100%. After 20 days, powdery mildew symptoms were observed on leaves of inoculated plants. Noninoculated plants remained healthy. The pathogenicity test was carried out twice. To our knowledge, this is the first report of L. clavata on poinsettia in Italy and probably in Europe. It presently is restricted to a few commercial farms. L. clavata previously has been observed on poinsettia in Kenya (1,2). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) M. L. Daughtrey et al. Powdery Mildew Diseases. Pages 39–42 in: Compendium of Flowering Potted Plant Diseases. The American Phytopathological Society, St. Paul, MN, 1995. (2) M. A. Nour. Trans. Brit. Mycol. Soc. 40:477, 1957.


Plant Disease ◽  
2007 ◽  
Vol 91 (9) ◽  
pp. 1203-1203 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Coreopsis lanceolata L. (Asteraceae) is an ornamental species grown in parks and gardens and very much appreciated for its long-lasting flowering period. During the summer and fall of 2006, severe outbreaks of a previously unknown powdery mildew were observed on plants in several gardens near Biella (northern Italy). Both surfaces of leaves of the affected plants were covered with dense white mycelia and conidia. As the disease progressed, infected leaves turned yellow and died. Mycelia and conidia also were observed on stems and flower calyxes. Conidia were hyaline, ellipsoid, borne in short chains (5 to 6 conidia per chain) and measured 33 × 20 (27 to 35 × 17 to 22) μm. Conidiophores, 68 × 11 (62 to 76 × 10 to 12) μm, showed the foot cell measuring 50 × 11 (38 to 58 × 10 to 12) μm, followed by one shorter cell measuring 18 × 12 (13 to 19 × 12 to 13) μm. Fibrosin bodies were present. Chasmothecia were spherical and amber with a diameter of 99 (93 to 105) μm. Each chasmothecium contained one ascus with eight ascospores. On the basis of its morphology, the causal agent was determined to be a Podosphaera sp. (1). The ITS region (internal transcribed spacer) of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 531 bp obtained showed an E-value of 0.0 with Podosphaera fusca (3). The nucleotide sequence has been assigned GenBank Accession No. EF 442023. Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy C. lanceolata plants. Three plants were inoculated. Three noninoculated plants served as the control. Plants were maintained in a greenhouse at temperatures ranging from 20 to 28°C. Twelve days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on C. lanceolata in Italy. Species of Coreopsis were previously described as host to Erysiphe cichoracearum, Sphaerotheca macularis and Leveillula taurica and S. fusca (2,4). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun. A Monograph of the Erysiphaceae (Powdery Mildews). Cramer, Berlin, GDR, 1987. (3) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000 (4) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society. St Paul, MN, 1989.


Sign in / Sign up

Export Citation Format

Share Document