scholarly journals Resistance to Quinone Outside Inhibitor Fungicides Conferred by the G143A Mutation in Cercospora sojina (Causal Agent of Frogeye Leaf Spot) Isolates from South Dakota Soybean Fields

2019 ◽  
Vol 20 (2) ◽  
pp. 104-105 ◽  
Author(s):  
Febina M. Mathew ◽  
Emmanuel Byamukama ◽  
Danilo L. Neves ◽  
Carl A. Bradley

Resistance to quinone outside inhibitor (QoI) fungicides was detected in Cercospora sojina (causal agent of frogeye leaf spot) isolates collected from soybean (Glycine max) fields in four South Dakota counties during the 2018 growing season. A discriminatory dose assay was used to detect QoI-resistant isolates, and a follow-up polymerase chain reaction assay was used to determine the presence of the G143A mutation in QoI-resistant isolates. This is the first report of resistance to QoI fungicides in C. sojina isolates from South Dakota.

Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 544-550 ◽  
Author(s):  
F. Zeng ◽  
E. Arnao ◽  
G. Zhang ◽  
G. Olaya ◽  
J. Wullschleger ◽  
...  

Frogeye leaf spot of soybean, caused by the fungus Cercospora sojina, reduces soybean yields in most of the top-producing countries around the world. Control strategies for frogeye leaf spot can rely heavily on quinone outside inhibitor (QoI) fungicides. In 2010, QoI fungicide-resistant C. sojina isolates were identified in Tennessee for the first time. As the target of QoI fungicides, the cytochrome b gene present in fungal mitochondria has played a key role in the development of resistance to this fungicide class. The cytochrome b genes from three QoI-sensitive and three QoI-resistant C. sojina isolates were cloned and sequenced. The complete coding sequence of the cytochrome b gene was identified and found to encode 396 amino acids. The QoI-resistant C. sojina isolates contained the G143A mutation in the cytochrome b gene, a guanidine to cytosine transversion at the second position in codon 143 that causes an amino acid substitution of alanine for glycine. C. sojina-specific polymerase chain reaction primer sets and TaqMan probes were developed to efficiently discriminate QoI-resistant and -sensitive isolates. The molecular basis of QoI fungicide resistance in field isolates of C. sojina was identified as the G143A mutation, and specific molecular approaches were developed to discriminate and to track QoI-resistant and -sensitive isolates of C. sojina.


2020 ◽  
Vol 21 (4) ◽  
pp. 230-231 ◽  
Author(s):  
Danilo L. Neves ◽  
Martin I. Chilvers ◽  
Tamra A. Jackson-Ziems ◽  
Dean K. Malvick ◽  
Carl A. Bradley

Frogeye leaf spot, caused by Cercospora sojina, is an important disease of soybean (Glycine max) in the United States. An important tactic to manage frogeye leaf spot is to apply foliar fungicides. Isolates of C. sojina were collected from soybean fields in one county in Michigan, three counties in Minnesota, and 10 counties in Nebraska in 2019, and they were tested for resistance to quinone outside inhibitor (QoI) fungicides using a discriminatory dose assay, a PCR assay, and DNA sequencing. Results of the testing indicated that QoI fungicide-resistant isolates were detected in isolates from all counties. Testing results also indicated that the G143A mutation was responsible for the QoI fungicide resistance. This is the first report of QoI fungicide-resistant C. sojina isolates in Michigan, Minnesota, and Nebraska and expands the geographical distribution of QoI fungicide-resistant C. sojina isolates to 18 states in total.


2018 ◽  
Vol 19 (4) ◽  
pp. 295-302 ◽  
Author(s):  
Guirong Zhang ◽  
Tom W. Allen ◽  
Jason P. Bond ◽  
Ahmad M. Fakhoury ◽  
Anne E. Dorrance ◽  
...  

Isolates of Cercospora sojina, causal agent of frogeye leaf spot of soybean (Glycine max), were collected across Alabama, Arkansas, Delaware, Illinois, Indiana, Iowa, Kentucky, Louisiana, Mississippi, Missouri, North Carolina, Ohio, Tennessee, and Virginia and were evaluated for quinone outside inhibitor (QoI) fungicide resistance. Collection of these isolates from these 14 states occurred between 2010 and 2017. QoI fungicide-resistant C. sojina isolates were detected in all 14 states surveyed and represent a total of 240 counties or parishes. In 2017, these 240 counties and parishes represented approximately 13% of the harvested soybean hectares in the United States. In light of this widespread occurrence of QoI fungicide-resistant C. sojina isolates, management of frogeye leaf spot should focus on integrated management practices such as planting resistant soybean cultivars, rotating with nonhost crops, and tilling to speed up decomposition of infested soybean residue. When foliar fungicide application is warranted, fungicide products that contain active ingredients from chemistry classes other than the QoI class should be applied for frogeye leaf spot management.


Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 767-767 ◽  
Author(s):  
G. R. Zhang ◽  
M. A. Newman ◽  
C. A. Bradley

Quinone outside inhibitor (QoI; also known as strobilurin) fungicides sometimes are applied to soybean (Glycine max) fields to help manage frogeye leaf spot of soybean (caused by Cercospora sojina) in the United States. In August 2010, soybean leaflets exhibiting severe frogeye leaf spot symptoms were collected from a field in Lauderdale County, TN that had been treated twice with pyraclostrobin during that growing season. The field had been planted into soybean annually since at least 2008, and a QoI fungicide had been applied to the field in each of those years. Fifteen single-spore isolates of C. sojina were recovered from the affected soybean leaflets. These isolates were identified as C. sojina based on the observed symptoms on the soybean leaflets and the morphology and size of conidiophores and conidia (3). In addition, DNA was extracted from the cultures, PCR amplification of the small subunit rDNA and internal transcribed spacer (ITS) region was conducted (2), and the resulting PCR product was sequenced at the Keck Biotechnology Center at the University of Illinois, Urbana. The resulting nucleotide sequences were compared with sequences deposited in the nucleotide database ( http://www.ncbi.nlm.nih.gov ) and showed highest homology to sequences of C. sojina. The isolates were tested for their sensitivity to technical-grade formulations of the QoI fungicides azoxystrobin, pyraclostrobin, and trifloxystrobin with an in vitro conidial germination assay with fungicide + salicylhydroxamic acid (SHAM)-amended potato dextrose agar as described by Bradley and Pedersen (1). The effective concentration at which 50% conidial germination was inhibited (EC50) was determined for all 15 C. sojina isolates, with mean values of 3.1644 (2.7826 to 4.5409), 0.3297 (0.2818 to 0.6404), and 0.8573 (0.3665 to 2.5119) μg/ml for azoxystrobin, pyraclostrobin, and trifloxystrobin, respectively. When compared with previously established mean EC50 values of C. sojina baseline isolates (4), EC50 values of the C. sojina isolates collected from the Lauderdale County, TN soybean field were approximately 249- to 7,144-fold greater than the EC50 values of the baseline isolates. These results indicate that all isolates recovered from the Lauderdale County, TN soybean field were highly resistant to QoI fungicides. To our knowledge, this is the first report of QoI fungicide resistance occurring in C. sojina, and surveys for additional QoI fungicide-resistant C. sojina isolates are needed to determine their prevalence and geographic distribution. In light of these findings, soybean growers in Tennessee and adjacent states should consider utilizing alternative frogeye leaf spot management practices such as planting resistant cultivars, rotating to nonhost crops, and tilling affected soybean residue (3). References: (1) C. A. Bradley and D. K. Pedersen. Plant Dis. 95:189, 2011. (2) N. S. Lord et al. FEMS Microbiol. Ecol. 42:327, 2002. (3) D. V. Phillips. Page 20 in: Compendium of Soybean Diseases. 4th ed. G. L. Hartman et al., eds. The American Phytopathological Society, St. Paul, MN, 1999. (4) G. Zhang et al. Phytopathology (Abstr.) 100(suppl.):S145, 2010.


Plant Disease ◽  
2021 ◽  
Author(s):  
Bennett Harrelson ◽  
Bikash Ghimire ◽  
Robert Kemerait ◽  
Albert Culbreath ◽  
Zenglu Li ◽  
...  

Frogeye leaf spot (FLS), caused by the fungal pathogen Cercospora sojina K. Hara, is a foliar disease of soybean (Glycine max L. (Merr.)) responsible for yield reductions throughout the major soybean producing regions in the world. In the United States, management of FLS relies heavily on the use of resistant cultivars and in-season fungicide applications, specifically within the class of quinone outside inhibitors (QoIs), which has resulted in the development of fungicide resistance in many states. In 2018 and 2019, 80 isolates of C. sojina were collected from six counties in Georgia and screened for QoI fungicide resistance using molecular and in vitro assays, with resistant isolates being confirmed from three counties. Additionally, 50 isolates, including a “baseline isolate” with no prior fungicide exposure, were used to determine the percent reduction of mycelial growth to two fungicides, azoxystrobin and pyraclostrobin, at six concentrations: 0.0001, 0.001, 0.01, 0.1, 1, and 10 g ml-1. Mycelial growth observed for resistant isolates varied significantly from both the sensitive isolates and the baseline isolate for azoxystrobin concentrations of 10, 1, 0.1, and 0.01 g ml-1 and for pyraclostrobin concentrations of 10, 1, 0.1, 0.01 and 0.001 g ml-1. Moreover, 40 isolates were used to evaluate pathogen race on six soybean differential cultivars by assessing susceptible or resistant reactions. Isolate reactions suggested 12 races of C. sojina present in Georgia, four of which have not been previously described. Species richness indicators (rarefaction and abundance-based coverage estimator - ACE) indicated that within-county C. sojina race numbers were undersampled in the present study, suggesting the potential for the presence of either additional undescribed races or known but unaccounted for races in Georgia. However, no isolates were pathogenic on differential cultivar ‘Davis’, carrying the Rcs3 resistance allele, suggesting the gene is still an effective source of resistance in Georgia.


2011 ◽  
Vol 27 (2) ◽  
pp. 183-186 ◽  
Author(s):  
Ji-Seong Kim ◽  
Young-Su Lee ◽  
Sung-Kee Kim ◽  
Ki-Deok Kim ◽  
Jin-Won Kim

2021 ◽  
Author(s):  
◽  
Bruna MacGregor

Successful management of Cercospora sojina, the causal agent of frogeye leaf spot, can be achieved through utilizing resistant varieties and fungicide applications. Fungicides in the quinone outside inhibitor (QoI) class are most effective in controlling C. sojina in the field. Unfortunately, azoxystrobin fungicide-resistant isolates of C. sojina have been recovered in many soybean growing areas of the U.S. Fungicide-resistant isolates of C. sojina were first detected in 2011 and 2012 in two counties in southeast Missouri, but no further assessment was conducted. In this study, 121 isolates were collected from 15 surveyed counties between 2019 and 2020 in an effort to understand the geographical distribution of fungicide-resistant C. sojina. Isolates were collected from fields based on the presence of frogeye leaf spot symptoms. Samples were brought to the laboratory and isolates were recovered from individual lesions. A fungicide sensitivity bioassay was conducted to determine which isolates were resistant to the QoI class of fungicides. The fungicide sensitivity bioassay consisted of full-strength PDA amended with technical grade azoxystrobin at five different concentrations and a no fungicide control. Out of 121 isolates, 81 were fungicide-resistant representing 13 of the 15 Missouri counties included in the survey. Notably, the northwest corner of Missouri had the highest concentration of fungicide-resistant isolates, consistent with the recent recovery of fungicide-resistant C. sojina isolates in Iowa and Nebraska. The widespread recovery of fungicide-resistant C. sojina in multiple counties throughout Missouri provides new insight into disease management in the state.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1067-1067 ◽  
Author(s):  
M. Scandiani ◽  
M. Ferri ◽  
B. Ferrari ◽  
N. Formento ◽  
M. Carmona ◽  
...  

During the growing seasons of 2008 to 2009 and 2009 to 2010, severe outbreaks of soybean (Glycine max (L.) Merr.) frogeye leaf spot, a disease caused by Cercospora sojina Hara, occurred in several areas in Argentina (1). Two surveys were conducted in soybean fields, one in 2008 that included the provinces of Buenos Aires, Córdoba, and Santa Fe, and another that was performed in 2009 in the same provinces plus three others: Entre Ríos, Santiago del Estero, and Tucumán. In both surveys, plants presented circular lesions with reddish brown-to-gray spots and bordered by typical, narrow, reddish purple margins (3). To promote sporulation and to enable identification of the causal agent, leaves of diseased plants were collected and placed in a moist chamber for 24 h with a 12-h light cycle at 25°C. Conidia were plated on potato dextrose agar medium amended with streptomycin and were incubated at 25°C and 12 h of fluorescent light. Isolated cultures sporulated in 10 days and, on the basis of their morphology, were identified as C. sojina. A total of 147 isolates were deposited at the Culture Collection of CEREMIC (Centro de Referencia de Micología). They produced one- to nine-septate hyaline, elongate to fusiform conidia that measured 54.9 ± 16.2 × 5.7 ± 1.0 μm. Six isolates of C. sojina, each representing a province, were inoculated on a set of 12 differential soybean cultivars: Lee, Davis, Hood, Richland, Lincoln, Kent, Tracy, S 100, Palmetto, Peking, CNS, and Blackhawk (2). Fifteen plants of each differential were sprayed at V3 growth stage with a suspension of 6 × 104 conidia/ml. The test was conducted twice in a complete randomized design with three replicates. Control plants were sprayed with sterile distilled water. After inoculation, plants were placed in a greenhouse bench humidity chamber at 26 to 28°C for 72 h. Disease was rated 14 days after inoculation; plants with numerous lesions were considered susceptible and each of the 15 plants was given a score of 1. Plants with small or no lesions were classified as resistant and given a score of 0. Control plants remained healthy. The pathogen was reisolated from symptomatic plants and morphological characteristics were consistent with C. sojina. Based on the response of the differentials to each isolate and on the race designations, the isolates from Buenos Aires, Córdoba, Santa Fe, and Tucumán belong to race 11, while those from Santiago del Estero and Entre Ríos province to race 12. The finding of these two races threatening soybean cultivars in Argentina may be indicative of additional races. Thus, the incorporation of multiple resistance genes may reduce the impact of the disease on soybean. To our knowledge, this is the first report of the identification of races of C. sojina in Argentina. References: (1) M. A. Carmona et al. Plant Dis. 93:966, 2009. (2) M. A. R. Mian et al. Crop Sci. 48:14, 2008. (3) D.V. Phillips. Page 20 in: Compendium of Soybean Diseases. 4th ed. APS Press, St. Paul, MN, 1999.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 749-753
Author(s):  
Wenyuan Li ◽  
Beibei Huang ◽  
Qiang Shen ◽  
Shouwei Jiang ◽  
Kun Jin ◽  
...  

Abstract In recent months, the novel coronavirus disease 2019 (COVID-19) pandemic has become a major public health crisis with takeover more than 1 million lives worldwide. The long-lasting existence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not yet been reported. Herein, we report a case of SARS-CoV-2 infection with intermittent viral polymerase chain reaction (PCR)-positive for >4 months after clinical rehabilitation. A 35-year-old male was diagnosed with COVID-19 pneumonia with fever but without other specific symptoms. The treatment with lopinavir-ritonavir, oxygen inhalation, and other symptomatic supportive treatment facilitated recovery, and the patient was discharged. However, his viral PCR test was continually positive in oropharyngeal swabs for >4 months after that. At the end of June 2020, he was still under quarantine and observation. The contribution of current antivirus therapy might be limited. The prognosis of COVID-19 patients might be irrelevant to the virus status. Thus, further investigation to evaluate the contagiousness of convalescent patients and the mechanism underlying the persistent existence of SARS-CoV-2 after recovery is essential. A new strategy of disease control, especially extending the follow-up period for recovered COVID-19 patients, is necessary to adapt to the current situation of pandemic.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 949
Author(s):  
Asta Raskiliene ◽  
Alina Smalinskiene ◽  
Vilma Kriaucioniene ◽  
Vaiva Lesauskaite ◽  
Janina Petkeviciene

MC4R, LEP, and LEPR genes are involved in the hypothalamic leptin-melanocortin regulation pathway, which is important for energy homeostasis. Our study aimed to evaluate the associations between the MC4R rs17782313, LEP rs7799039, and LEPR rs1137101 polymorphisms with obesity-related parameters in childhood and adulthood. The data were obtained from the Kaunas Cardiovascular Risk Cohort study, which started in 1977 with 1082 participants aged 12–13 years. In 2012–2014, the follow-up survey was carried out. Genotype analysis of all respondents (n = 509) aged 48–49 years was performed for the gene polymorphisms using Real-Time Polymerase Chain Reaction. Anthropometric measurements were performed in childhood and adulthood. In childhood, only skinfold thicknesses were associated with gene variants being the lowest in children with MC4R TT genotype and LEP AG genotype. In adulthood, odds of obesity and metabolic syndrome was higher in MC4R CT/CC genotype than TT genotype carriers (OR 1.8; 95% CI 1.2–2.8 and OR 1.6; 95% CI 1.1–2.4, respectively). In men, physical activity attenuated the effect of the MC4R rs17782313 on obesity. The LEP GG genotype was associated with higher BMI, waist circumference, and visceral fat level only in men. No associations of the LEPR rs1137101 polymorphisms with anthropometric measurements and leptin level were found. In conclusion, the associations of the MC4R and LEP gene polymorphisms with obesity-related parameters strengthened with age.


Sign in / Sign up

Export Citation Format

Share Document