Spotted Wilt Disease Evaluation Among High-Oleic Peanut Cultivars

2013 ◽  
Vol 14 (1) ◽  
pp. 15 ◽  
Author(s):  
W. D. Branch ◽  
A. K. Culbreath

The release of high-oleic, United States runner and virginia market type peanut (Arachis hypogaea L.) cultivars has been steadily increasing during the past several years. Two planting dates were utilized for disease evaluation and agronomic performance among these newer high-oleic cultivars. The first planting date test was in mid-April to allow for increased incidence of spotted wilt disease caused by Tomato spotted wilt virus (TSWV). The second planting date test was in mid-May to allow for less TSWV and provide more of an optimum time by comparison. Significant differences (P ≤ 0.05) were found within each of the three (3-year) averages among cultivars for TSWV and total disease (TD) incidence, pod yield, and dollar values. Among the virginia-types, Georgia Hi-O/L, Georgia-05E, and Georgia-08V, and runner-types, Georgia-02C and Georgia-09B, consistently had the lowest TSWV and TD incidence and the highest pod yield and dollar values in both the mid-April and mid-May planting date tests. No significant differences were found between the mid-April and the mid-May planting dates when averaged across this 5-year study for TSWV and TD incidence, pod yield, and dollar values. This suggests that the high-level of TSWV-resistance among these newer high-oleic cultivars should have a greater influence than planting dates on agronomic performance. Accepted for publication 8 June 2013. Published 12 August 2013.

Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 898-904 ◽  
Author(s):  
A. K. Culbreath ◽  
B. L. Tillman ◽  
R. S. Tubbs ◽  
J. P. Beasley ◽  
R. C. Kemerait ◽  
...  

Field experiments were conducted at Gainesville and Marianna, FL in 2004 and 2005 in which severity of spotted wilt, caused by Tomato spotted wilt virus, and pod yield were compared in six peanut (Arachis hypogaea) cultivars. The six cultivars included the moderately field resistant cultivars ANorden, C-99R, and Georgia Green; the highly field resistant cultivars AP-3 and DP-1; and the susceptible cultivar SunOleic 97R. There were four trials at each location, with four planting dates that ranged from late March to early June. Tomato spotted wilt severity in moderately resistant and susceptible cultivars was lower at Gainesville than at Marianna in both years in moderately resistant and susceptible cultivars. Trends in incidence for the two locations were less evident for AP-3 and DP-1. At Gainesville, there were few differences in tomato spotted wilt severity, and severity ratings were similar for Georgia Green and SunOleic 97R in two of four trials in 2004 and across all trials in 2005. At Marianna, severity ratings were lower for Georgia Green than for SunOleic 97R in six of the eight trials, and severity of tomato spotted wilt was lower for AP-3, C-99R, and DP-1 than for Georgia Green in all eight trials. In 2004, there was a trend toward decreasing severity ratings for Georgia Green and SunOleic 97R with later planting dates, but not for AP-3 or DP-1 at Marianna. Split-plot field experiments were also conducted at Tifton, GA in 2005 through 2007 in which incidence of tomato spotted wilt and pod yield were compared for peanut cultivars AP-3 and Georgia Green across planting dates ranging from late April through late May. Incidence of tomato spotted wilt was lower for AP-3 than for Georgia Green within each planting date of all years, and planting date effects were smaller in AP-3, if observed at all, than in Georgia Green. In most planting dates of all three trials, yields were higher for AP-3 than for Georgia Green. The relationships between yield and planting date were not consistent. These results indicate that the level of field resistance in AP-3 and DP-1 cultivars is sufficient to allow planting in late April without greatly increasing the risk of losses to tomato spotted wilt.


2010 ◽  
Vol 37 (1) ◽  
pp. 83-91 ◽  
Author(s):  
W. D. Branch ◽  
S. M. Fletcher

Abstract Maximum (Max) and minimum (Min) peanut (Arachis hypogaea L.) input production tests were conducted for three consecutive years (2004–06) to evaluate agronomic performance and economic return among several runner and virginia genotypes. Mid-April planting dates were used each year. The Max tests included recommended production practices of seeding rate, fertilization, irrigation, and pesticides; whereas, the Min tests excluded irrigation, insecticides, and included only three fungicide sprays. Results showed variation among years, locations, and genotypes for TSWV and total disease incidence, pod yield, gross dollar value, and dollar value return above variable cost. The performance results also show the benefit to growers from agronomic and economic improvement with many of the newly released peanut cultivars in Georgia. Significant differences (P ≤ 0.05) among the peanut genotypes for tomato spotted wilt disease [caused by Tomato spotted wilt virus (TSWV)] where noted. The lowest TSWV incidence was noted for the cultivars Georgia-06G, Georgia Greener, Georgia-07W, Georgia-08V, Georgia-05E, Georgia-03L, Georgia-02C, Georgia-01R, and AP-3. Highest pod yields were found among Georgia-06G, Georgia Greener, Georgia-07W, Georgia-08V, Georgia-05E, and Georgia-01R. In general, the highest average dollar value return above variable cost was found in the Max test as compared to the Min test, and the highest average dollar value return above variable cost including seed cost was found with the runner-type cultivars Georgia-06G and Georgia Greener.


2012 ◽  
Vol 13 (1) ◽  
pp. 23 ◽  
Author(s):  
A. K. Culbreath ◽  
W. D. Branch ◽  
J. P. Beasley ◽  
R. S. Tubbs ◽  
C. C. Holbrook

Establishing high plant populations helps suppress epidemics of spotted wilt, caused by Tomato spotted wilt virus (TSWV), in peanut (Arachis hypogaea L.). However, seed costs make it desirable to minimize seeding rates used. To determine whether new resistant genotypes can allow use of reduced seeding rates, field experiments were conducted at Tifton, GA, in 2008-2009 in which seven genotypes were combined factorially with two seeding rates, 9.8 and 19.7 seed/m of row. Genotypes included three cultivars (Georgia Green, Georgia-01R, and Georgia-02C) and four advanced breeding lines (GA 052524, GA 052527, GA 052529, and C724-19-25). Across years and genotypes, final incidences of spotted wilt and standardized areas under the spotted wilt disease progress curves were lower, and yields were higher in all other cultivars and breeding lines than in the moderately TSWV-resistant cultivar Georgia Green. Final incidence of spotted wilt was lower in GA 052527 and GA 052529 than in any of the cultivar standards, and yields of all four breeding lines were higher than for any of the three cultivars. Across genotypes, final incidence of spotted wilt and standardized areas under the spotted wilt disease progress curves were lower and yield was higher for the 19.8 seed/m treatment than the 9.8 seed/m. Accepted for publication 30 November 2011. Published 27 February 2012.


2014 ◽  
Vol 41 (1) ◽  
pp. 32-41 ◽  
Author(s):  
R. C. Nuti ◽  
C. Y. Chen ◽  
P. M. Dang ◽  
J. E. Harvey

ABSTRACT Tomato spotted wilt virus (TSWV) is vectored by thrips and causes an economically damaging peanut disease in the southeastern U.S. Peanut planting was traditionally initiated when soil temperatures became favorable in April. Planting in the latter two thirds of May is recommended to avoid thrips feeding and reduce tomato spotted wilt (TSW) incidence. This regime concentrates work load for growers and buying points, increases risk of tropical storm damage during harvest, and may contribute to reduced crop maturity. Improved TSW tolerance in cultivars may allow growers to plant earlier spreading risk and work load. Cultivars Georgia Green, Georgia-03L, AT 3085RO, and Flavor Runner 458 were compared with the advanced breeding line EXP 271516 based on peanut foliar condition, pod yield, and grade in 2008 and 2009 in Dawson, Georgia and Headland, Alabama. Peanuts were planted at five planting dates starting in late April through early June each year. Disease incidence was variable according to year, location, and planting date. Planting dates in April and early May resulted in higher TSW incidence. Foliar TSW ratings for the susceptible cultivar Flavor Runner 458 ranged between 48–96% at harvest. Georgia Green had 10–65% TSW incidence while maintaining yields between 3,315–5,440 kg/ha. Other cultivars had better TSW tolerance resulting in higher yield under more intense TSW pressure. Planting in the middle of May or later resulted in the highest yields. Cultivars with improved tolerance to TSW maintained yield above 4,490 kg/ha in early plantings. These results indicate the least risky management is possible by planting the most TSW tolerant genotypes during the current recommended planting dates.


2021 ◽  
Author(s):  
William D. Branch ◽  
I.N. Brown ◽  
A.K. Culbreath

During 2012, 2015, and 2018 a set of 18 peanut (Arachis hypogaea L.) genotypes (some common and some different) were used to evaluate the effect of planting dates (April, May, and June) on leaf spot disease and pod yield. Within each year, the same genotypes were grown during the three planting dates at the Gibbs Farm near the University of Georgia, Coastal Plain Experiment Station, Tifton, GA using a randomized complete block design with five replications without fungicides or insecticides but with irrigation. Each year, significant differences (P≤0.05) were found among the genotypes within each of these three planting dates for leaf spot disease ratings (0-9 scale) and pod yields. ‘Georganic’ in 2012 and 2015; and GA 132705, ‘Georgia-19HP’, and ‘Georgia-14N’ in 2018 had among the lowest leaf spot ratings. ‘Georgia-12Y’ had the highest average pod yield for each year of the three years. Each year during this study, the April planting date had the lowest, and the June planting date had the highest leaf spot disease ratings. Percent coefficient of variation (CV) was consistently lower at the June planting date which suggest the least variability among the peanut genotypes. In the overall average of genotypes, the April planting date resulted in the highest pod yield and the June planting date had the lowest average pod yield. In summary, April planting dates resulted in the highest pod yields, and the lowest leaf spot ratings across each of the three years.


2019 ◽  
Vol 46 (2) ◽  
pp. 191-197 ◽  
Author(s):  
S.S. Sidhu ◽  
E. van Santen ◽  
S. George ◽  
I. Small ◽  
D.L. Wright

ABSTRACT Peanuts (Arachis hypogaea L.) have been one of the most profitable crops in the southeastern coastal plains but with increasing cost of production, growers continually seek to lower inputs and enhance overall profitability of their farms. Peanut cultivars with high yield potential and disease resistance along with drought tolerance are therefore obvious choices for sustainable production. Runner-type peanut cultivars were evaluated for pod yield and grade for three yr. Five peanut cultivars were evaluated in 2014 and 2015 and six cultivars in 2016 at the North Florida Research and Education Center, University of Florida, Quincy, FL. Cultivar performance was observed at different planting dates, four in 2014 and three in 2015 and 2016, to evaluate impacts of early, mid, and late planting with and without irrigation. Georgia cultivar GA-12Y consistently yielded greater than the other varieties in all yr of the study. Average pod yield for GA-12Y was 5980 kg/ha for three yr compared to 5140 kg/ha, 4730 kg/ha, 4890 kg/ha for GA-06G, FloRun 107, and TUFRunner 511, respectively. Florida cultivar TUFRunner 297 yielded greater (5300 kg/ha) than the rest of Florida cultivars irrespective of the planting date and had higher proportion of total sound mature kernels (TSMK) compared to GA-12Y in two of the three yr. Planting date had no impact on peanut pod yield in 2014 and 2015. However, peanut yield for all the cultivars was higher at later planting dates in 2016. The advantage of irrigation was not always consistent in all the yr, likely due to high rainfall during the study yr, removing that advantage.


1999 ◽  
Vol 26 (2) ◽  
pp. 100-106 ◽  
Author(s):  
A. K. Culbreath ◽  
J. W. Todd ◽  
D. W. Gorbet ◽  
S. L. Brown ◽  
J. A. Baldwin ◽  
...  

Abstract Epidemics of tomato spotted wilt, caused by tomato spotted wilt Tospovirus (TSWV), were monitored in field plots of runner-type peanut (Arachis hypogaea L.) cultivars Georgia Green and Georgia Runner and numerous breeding lines from four different breeding programs as part of efforts toward characterizing breeding lines with potential for release as cultivars. Breeding lines were divided into early, medium and late maturity groups. The tests were conducted near Attapulgus, GA and Marianna, FL in 1997 and in Tifton, GA and Marianna, FL in 1998. Epidemics in some early and medium maturing breeding lines, including some genotypes with high oleic acid oil chemistry, were comparable to those in Georgia Green, the cultivar most frequently used in the southeastern U.S. for suppression of spotted wilt epidemics. No early maturing breeding lines had lower spotted wilt final intensity ratings or higher yields than Georgia Green. However, spotted wilt intensity ratings in some late maturing lines and a smaller number of medium maturing lines were significantly lower than those of Georgia Green. Several of those lines also produced greater pod yields than Georgia Green. Results from these experiments indicated that there is potential for improving management of spotted wilt though development of cultivars that suppress spotted wilt epidemics more than currently available cultivars. There was no indication that differences in spotted wilt ratings corresponded to differences in numbers of thrips adults or larvae.


Plant Disease ◽  
2000 ◽  
Vol 84 (8) ◽  
pp. 847-852 ◽  
Author(s):  
D. G. Riley ◽  
H. R. Pappu

Two studies were conducted in Georgia during the spring of 1997 and 1998 to evaluate various management practices for reducing thrips and thrips-vectored Tomato spotted wilt virus (TSWV) in tomato. Populations of the two species of thrips responsible for transmitting TSWV in tomato fields, Frankliniella occidentalis and F. fusca, were determined using blossom and sticky trap samples. Management practices evaluated were host plant resistance, insecticide treatments, planting date, and light-reflective mulch. In both years, intensive insecticide treatment had the largest effect in reducing thrips and spotted wilt and increasing marketable yield, compared with host plant resistance and reflective mulch. The effect of planting date was consistent in that the later planting date resulted in higher incidence of TSWV, lower thrips numbers, and lower tomato yields, both in fruit quality and dollar value. Host plant resistance and reflective mulch significantly reduced thrips and TSWV. In both years, early planting on black plastic with an intensive insecticide treatment resulted in the highest yield.


Author(s):  
Monisha Mitra ◽  
Saikat Gantait ◽  
Rajib Kundu

Present investigation was conducted in 31 groundnut accessions to assess genetic divergence, characters association involving 13 quantitative characters and path coefficients in order to identify superior accessions exhibiting higher genetic diversity. Number of pods/plant, secondary branches, kernel width, and pod yield displayed a higher level of coefficient of variation both at phenotypic and genotypic level. Genetic advance with higher heritability indicated preponderance of additive variance for pod length, pod yield, and number of pods/plant. Number of secondary branches, kernel width, pod length, and number of pods/plant revealed significant positive correlation with pod yield. Path coefficient analysis revealed exertion of high positive direct effects on pod yield through pod length, kernel width and number of pods/plant. Cluster analysis exhibited substantial diversity among 31 accessions forming 13 clusters. Two clusters [X (two accessions) and XII (one accession)] showed the largest distance, which suggests hybridization between these accessions to achieve high level of heterosis for further exploitation. Five accessions viz., TAG-24, TG-69, ICGV-02005, TG-73 and TG-80 were identified as the most divergent for future use.


Sign in / Sign up

Export Citation Format

Share Document