scholarly journals Molecular Mapping of Stripe Rust Resistance Gene Yr76 in Winter Club Wheat Cultivar Tyee

2016 ◽  
Vol 106 (10) ◽  
pp. 1186-1193 ◽  
Author(s):  
C. Xiang ◽  
J. Y. Feng ◽  
M. N. Wang ◽  
X. M. Chen ◽  
D. R. See ◽  
...  

Tyee, one of the wheat cultivars used to differentiate races of Puccinia striiformis f. sp. tritici in the United States, was identified to have a single gene for all-stage resistance, tentatively named YrTye. To map the gene, Tyee was crossed with ‘Avocet Susceptible’ (AvS). Genetic analysis of the F1, F2, F2:3, and BC1 progenies confirmed a single dominant gene for resistance to race PSTv-37 that is avirulent to YrTye. A mapping population of 135 F2 plants was phenotyped with PSTv-37 and the derived F2:3 lines were tested with races PSTv-37, PSTv-40, and PSTv-79. The F2 mapping population was genotyped with simple sequence repeat (SSR) markers. A genetic map comprising 13 SSR markers located YrTye in chromosome 3AS flanked distally by SSR marker wmc11 and proximally by wmc532 at 2.6 and 3.4 cM, respectively. Amplification of Chinese Spring 3A deletion lines placed the gene in the distal bin 3AS4-0.45 to 1.00. Because YrTye is different from all formally named Yr genes in chromosomal location, we permanently name the gene Yr76. A near-isogenic line of spring common wheat was developed and selected by testing F3 lines derived from a AvS*4/Tyee cross with Tyee-avirulent and virulent races and the flanking markers. The specific SSR alleles flanking Yr76 were validated using cultivars and breeding lines with and without the gene, and showed high polymorphisms. The specificity of Yr76 is useful in differentiating P. striiformis f. sp. tritici races, and its tightly linked markers will be useful in developing resistant cultivars when combining the gene with other genes for resistance to stripe rust.

2015 ◽  
Vol 105 (9) ◽  
pp. 1206-1213 ◽  
Author(s):  
J. Y. Feng ◽  
M. N. Wang ◽  
X. M. Chen ◽  
D. R. See ◽  
Y. L. Zheng ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Resistance is the best way to control the disease. YrSP, a gene originally from ‘Spaldings Prolific’ wheat and providing resistance to a broad spectrum of races, is used for differentiating P. striiformis f. sp. tritici races but its chromosomal location is not clear. To map YrSP, a near-isogenic line (AvSYrSPNIL) was backcrossed to the recurrent parent, Avocet S. Genetic analysis of the BC7F1, BC8, BC7F2, and BC7F3 progenies confirmed a single dominant gene for resistance. In total, 182 BC7F2 plants and their derived BC7F3 lines were phenotyped with an avirulent P. striiformis f. sp. tritici race and genotyped with simple-sequence repeat (SSR), single-nucleotide polymorphism (SNP), and sequence-tagged site (STS) markers. A linkage map was constructed with 3 SSR, 17 SNP, and 3 STS markers covering 23.3 centimorgans (cM). Markers IWA638 and dp269 were 0.6 cM proximal and 1.5 cM distal, respectively, to YrSP. The gene was mapped in chromosome bin 2BL-C-0.5, physically within the proximal 50% of the chromosome 2BL arm. Allelism tests based on F2 phenotypes indicated that YrSP is closely linked to but not allelic with genes Yr5, Yr7, Yr43, Yr44, and Yr53. Infection type data from tests with 10 historical and currently predominant P. striiformis f. sp. tritici races in the United States also demonstrated differences in specificity between YrSP and the other genes. The specificity of YrSP is useful in differentiating P. striiformis f. sp. tritici races and studying the plant–pathogen interactions, and the information of chromosomal location of the gene and its tightly linked markers should be useful in developing resistant cultivars when combined with other genes for resistance to stripe rust.


2009 ◽  
Vol 99 (10) ◽  
pp. 1209-1215 ◽  
Author(s):  
X. X. Sui ◽  
M. N. Wang ◽  
X. M. Chen

Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici, is one of the most devastating foliar diseases of wheat (Triticum aestivum) worldwide. Growing resistant cultivars is the best approach for control of the disease. Although the stripe rust resistance in spring wheat cv. Zak has been circumvented by a group of races of the pathogen predominant in the United States since 2000, the resistance genes in Zak were unknown. To identify and map the genes for resistance to stripe rust, Zak was crossed with susceptible wheat genotype ‘Avocet Susceptible’. Seedlings of the parents and F1, F2, and F3 progeny were tested with P. striiformis f. sp. tritici races PST-43 and PST-45 under controlled greenhouse conditions. Genetic analysis determined that Zak has a single dominant gene, designated as YrZak, conferring race-specific all-stage resistance. Resistance gene analog polymorphism (RGAP), simple sequence repeat (SSR), and sequence-tagged site (STS) techniques were used to identify molecular markers linked to YrZak. A linkage group of three RGAP, three SSR, and three STS markers was constructed for YrZak using 205 F3 lines. Amplification of the complete set of Chinese Spring nulli-tetrasomic lines with RGAP marker Xwgp102 indicated that YrZak is present on chromosome 2B. The three SSR markers further mapped YrZak to the long arm of chromosome 2B. Amplification of chromosome 2B deletion lines with SSR marker Xgwm501 further confirmed that YrZak is on chromosome 2BL. To determine the genetic distance between YrZak and Yr5, which also is present on chromosome 2BL, 300 F2 plants from cross Zak/Yr5 were tested with PST-43. Six susceptible plants were identified from the F2 population, indicating that YrZak and Yr5 are ≈42 centimorgans apart. The results of race reactions and chromosomal locations indicated that YrZak is different from previously identified genes for resistance to stripe rust. This gene should be useful in monitoring virulence changes in the pathogen population and in studying host–pathogen interactions.


Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1717-1724 ◽  
Author(s):  
Liyuan Hou ◽  
Juqing Jia ◽  
Xiaojun Zhang ◽  
Xin Li ◽  
Zujun Yang ◽  
...  

Wheat is one of the major food crops in the world. Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an economically important disease that affects wheat worldwide. The discovery of novel resistance genes and the deployment of effectively resistant cultivars are important for the ongoing control of wheat stripe rust and the maintenance of the agricultural productivity of wheat. CH7086, a new stripe rust-resistant wheat introgression line, was selected by crossing susceptible cultivars with the resistant Thinopyrum ponticum-derived partial amphiploid Xiaoyan 7430. The resistance of CH7086 is effective against all current Chinese P. striiformis f. sp. tritici races. CH7086 was crossed with the stripe rust-susceptible cultivars to develop F1, F2, F3, and BC1 populations for genetic analysis. Segregation in the F2 and BC1 populations and F2:3 lines were tested for resistance against the P. striiformis f. sp. tritici race CYR32. This test showed that CH7086 carries a single dominant gene for stripe rust resistance, which was temporarily designated YrCH86. The closest of the eight simple sequence repeat (SSR) and expressed sequence tag-SSR markers flanking the locus were X2AS33, which is 1.9 cM distal, and Xmag3807, which is 3.1 cM proximal. The resistance gene and its polymorphic markers were placed in deletion bin 2AS-0.78-1.00 using the ‘Chinese Spring’ nullisomic-tetrasomic, ditelosomic, and deletion lines. The tests of both allelism and resistance specificity suggested that the resistance gene found in CH7086 was not Yr17, which was the only current formally named Yr gene on chromosome 2AS. Thus, YrCH86 appeared to be a new locus and was permanently designated Yr69.


2016 ◽  
Vol 106 (4) ◽  
pp. 362-371 ◽  
Author(s):  
P. Cheng ◽  
X. M. Chen ◽  
D. R. See

Puccinia striiformis causes stripe rust on cereal crops and many grass species. However, it is not clear whether the stripe rust populations on grasses are able to infect cereal crops and how closely they are related to each other. In this study, 103 isolates collected from wheat, barley, triticale, rye, and grasses in the United States were characterized by virulence tests and simple sequence repeat (SSR) markers. Of 69 pathotypes identified, 41 were virulent on some differentials of wheat only, 10 were virulent on some differentials of barley only, and 18 were virulent on some differentials of both wheat and barley. These pathotypes were clustered into three groups: group one containing isolates from wheat, triticale, rye, and grasses; group two isolates were from barley and grasses; and group three isolates were from grasses and wheat. SSR markers identified 44 multilocus genotypes (MLGs) and clustered them into three major molecular groups (MG) with MLGs in MG3 further classified into three subgroups. Isolates from cereal crops were present in one or more of the major or subgroups, but not all, whereas grass isolates were present in all of the major and subgroups. The results indicate that grasses harbor more diverse isolates of P. striiformis than the cereals.


Plant Disease ◽  
2021 ◽  
Author(s):  
Cai Sun ◽  
Yike Liu ◽  
Qiang Li ◽  
Baotong Wang ◽  
Shuhui Chen ◽  
...  

Wheat stripe rust, an airborne fungal disease and caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is one of the most devastating diseases on wheat. It is the most effective and economical measure for the diseases control to identify high-level resistance genes and apply in wheat breeding. Chinese wheat cultivar Xike01015 presents high levels of all stage resistance (ASR) to the current predominant Pst race CYR33. In this study, a single dominant gene, designated as YrXk, was identified in Xike01015 conferring resistance to CYR33 with genetic analysis of F2 and BC1 population from cross of Mingxian169 (susceptible) and Xike01015. The specific length amplified fragment sequencing (SLAF-seq) strategy was used to construct linkage map in the F2 population. QTL analysis mapped YrXk to a 12.4 Mb segment on chromosome1BS, explaining over 86.96% phenotypic variance. Gene annotation in the QTL region identified three differential expressed candidate genes , TraesCS1B02G168600.1, TraesCS1B02G170200.1, and TraesCS1B02G172400.1. The qRT-PCR results displayed that TraesCS1B02G170200.1 and TraesCS1B02G168600.1 significantly up-regulated and down-regulated, respectively, and TraesCS1B02G170200.1 slightly up-regulated after changed with CYR33 in the seedling stage, which indicating these genes may function in wheat resistance to stripe rust. The results of this study can be used in wheat breeding for improving resistance to stripe rust.


Genome ◽  
2008 ◽  
Vol 51 (11) ◽  
pp. 922-927 ◽  
Author(s):  
P. G. Luo ◽  
X. Y. Hu ◽  
Z. L. Ren ◽  
H. Y. Zhang ◽  
K. Shu ◽  
...  

Stripe rust, caused by Puccinia striiormis Westend f. sp. tritici, is one of the most important foliar diseases of wheat ( Triticum aestivum L.) worldwide. Stripe rust resistance genes Yr27, Yr31, YrSp, YrV23, and YrCN19 on chromosome 2BS confer resistance to some or all Chinese P. striiormis f. sp. tritici races CYR31, CYR32, SY11-4, and SY11-14 in the greenhouse. To screen microsatellite (SSR) markers linked with YrCN19, F1, F2, and F3 populations derived from cross Ch377/CN19 were screened with race CYR32 and 35 SSR primer pairs. Linkage analysis indicated that the single dominant gene YrCN19 in cultivar CN19 was linked with SSR markers Xgwm410, Xgwm374, Xwmc477, and Xgwm382 on chromosome 2BS with genetic distances of 0.3, 7.9, 12.3, and 21.2 cM, respectively. Crosses of CN19 with wheat lines carrying other genes on chromosome 2B showed that all were located at different loci. YrCN19 is thus different from the other reported Yr genes in chromosomal location and resistance response and was therefore named Yr41. Prospects and strategies of using Yr41 and other Yr genes in wheat improvement for stripe rust resistance are discussed.


2005 ◽  
Vol 95 (8) ◽  
pp. 884-889 ◽  
Author(s):  
Vihanga Pahalawatta ◽  
Xianming Chen

Most barley cultivars are resistant to stripe rust of wheat that is caused by Puccinia striiformis f. sp. tritici. The barley cv. Steptoe is susceptible to all identified races of P. striiformis f. sp. hordei (PSH), the barley stripe rust pathogen, but is resistant to most P. striiformis f. sp. tritici races. To determine inheritance of the Steptoe resistance to P. striiformis f. sp. tritici, a cross was made between Steptoe and Russell, a barley cultivar susceptible to some P. striiformis f. sp. tritici races and all tested P. striiformis f. sp. hordei races. Seedlings of parents and F1, BC1, F2, and F3 progeny from the barley cross were tested with P. striiformis f. sp. tritici races PST-41 and PST-45 under controlled greenhouse conditions. Genetic analyses of infection type data showed that Steptoe had one dominant gene and one recessive gene (provisionally designated as RpstS1 and rpstS2, respectively) for resistance to races PST-41 and PST-45. Genomic DNA was extracted from the parents and 150 F2 plants that were tested for rust reaction and grown for seed of F3 lines. The infection type data and polymorphic markers identified using the resistance gene analog polymorphism (RGAP) technique were analyzed with the Mapmaker computer program to map the resistance genes. The dominant resistance gene in Steptoe for resistance to P. striiformis f. sp. tritici races was mapped on barley chromosome 4H using a linked microsatellite marker, HVM68. A linkage group for the dominant gene was constructed with 12 RGAP markers and the microsatellite marker. The results show that resistance in barley to the wheat stripe rust pathogen is qualitatively inherited. These genes might provide useful resistance against wheat stripe rust when introgressed into wheat from barley.


Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Anmin Wan ◽  
Kebede T. Muleta ◽  
Habtemariam Zegeye ◽  
Bekele Hundie ◽  
Michael O. Pumphrey ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat in Ethiopia. In total, 97 isolates were recovered from stripe rust samples collected in Ethiopia in 2013 and 2014. These isolates were tested on a set of 18 Yr single-gene differentials for characterization of races and 7 supplementary differentials for additional information of virulence. Of 18 P. striiformis f. sp. tritici races identified, the 5 most predominant races were PSTv-105 (21.7%), PSTv-106 (17.5%), PSTv-107 (11.3%), PSTv-76 (10.3%), and PSTv-41 (6.2%). High frequencies (>40%) were detected for virulence to resistance genes Yr1, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, Yr28, Yr31, Yr43, Yr44, YrExp2, and YrA. Low frequencies (<40%) were detected for virulence to Yr10, Yr24, Yr32, YrTr1, Hybrid 46, and Vilmorin 23. None of the isolates were virulent to Yr5, Yr15, YrSP, and YrTye. Among the six collection regions, Arsi Robe and Tiyo had the highest virulence diversities, followed by Bekoji, while Bale and Holeta had the lowest. Evaluation of 178 Ethiopian wheat cultivars and landraces with two of the Ethiopian races and three races from the United States indicated that the Ethiopian races were more virulent on the germplasm than the predominant races of the United States. Thirteen wheat cultivars or landraces that were resistant or moderately resistant to all five tested races should be useful for breeding wheat cultivars with resistance to stripe rust in both countries.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1534-1542 ◽  
Author(s):  
Anmin Wan ◽  
Xianming Chen

Puccinia striiformis f. sp. tritici causes stripe rust (yellow rust) of wheat and is highly variable in virulence toward wheat with race-specific resistance. During 2010, wheat stripe rust was the most widespread in the recorded history of the United States, resulting in large-scale application of fungicides and substantial yield loss. A new differential set with 18 yellow rust (Yr) single-gene lines was established and used to differentiate races of P. striiformis f. sp. tritici, which were named as race PSTv in distinction from the PST races identified in the past. An octal system was used to describe the virulence and avirulence patterns of the PSTv races. From 348 viable P. striiformis f. sp. tritici isolates recovered from a total of 381 wheat and grass stripe rust samples collected in 24 states, 41 races, named PSTv-1 to PSTv-41, were identified using the new set of 18 Yr single-gene differentials, and their equivalent PST race names were determined on the previous set of 20 wheat cultivar differentials. The frequencies and distributions of the races and their virulences were determined. The five most predominant races were PSTv-37 (34.5%), PSTv-11 (17.5%), PSTv-14 (7.2%), PSTv-36 (5.2%), and PSTv-34 (4.9%). PSTv-37 was distributed throughout the country while PSTv-11 and PSTv-14 were almost restricted to states west of the Rocky Mountains. The races had virulence to 0 to 13 of the 18 Yr genes. Frequencies of virulences toward resistance genes Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr43, Yr44, YrTr1, and YrExp2 were high (67.0 to 93.7%); those to Yr1 (32.8%) and YrTye (31.3%) were moderate; and those to Yr10, Yr24, Yr32, and YrSP were low (3.4 to 5.7%). All of the isolates were avirulent to Yr5 and Yr15.


Genome ◽  
2001 ◽  
Vol 44 (4) ◽  
pp. 509-516 ◽  
Author(s):  
Z X Shi ◽  
X M Chen ◽  
R F Line ◽  
H Leung ◽  
C R Wellings

The Yr9 gene, which confers resistance to stripe rust caused by Puccinia striiformis f.sp. tritici (P. s. tritici) and originated from rye, is present in many wheat cultivars. To develop molecular markers for Yr9, a Yr9 near-isogenic line, near-isogenic lines with nine other Yr genes, and the recurrent wheat parent 'Avocet Susceptible' were evaluated for resistance in the seedling stage to North American P. s. tritici races under controlled temperature in the greenhouse. The resistance gene analog polymorphism (RGAP) technique was used to identify molecular markers for Yr9. The BC7:F2 and BC7:F3 progeny, which were developed by backcrossing the Yr9 donor wheat cultivar Clement with 'Avocet Susceptible', were evaluated for resistance to stripe rust races. Genomic DNA was extracted from 203 BC7:F2 plants and used for cosegregation analysis. Of 16 RGAP markers confirmed by cosegregation analysis, 4 were coincident with Yr9 and 12 were closely linked to Yr9 with a genetic distance ranging from 1 to 18 cM. Analyses of nulli-tetrasomic 'Chinese Spring' lines with the codominant RGAP marker Xwgp13 confirmed that the markers and Yr9 were located on chromosome 1B. Six wheat cultivars reported to have 1B/1R wheat-rye translocations and, presumably, Yr9, and two rye cultivars were inoculated with four races of P. s. tritici and tested with 9 of the 16 RGAP markers. Results of these tests indicate that 'Clement', 'Aurora', 'Lovrin 10', 'Lovrin 13', and 'Riebesel 47/51' have Yr9 and that 'Weique' does not have Yr9. The genetic information and molecular markers obtained from this study should be useful in cloning Yr9, in identifying germplasm that may have Yr9, and in using marker-assisted selection for combining Yr9 with other stripe rust resistance genes.Key words: molecular markers, Puccinia striiformis f.sp. tritici, resistance gene analog polymorphism, Triticum aestivum.


Sign in / Sign up

Export Citation Format

Share Document